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Reinforcement learning helped us achieve 

a Top-2 ranking on the PaperWithCode leaderboard.

1
Dartmouth College, 

2
OpenAI



Recap
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• Image-text model -> instruction tuning -> zero-shot tasks

Figure copied from InstructBLIP paper



Challenges 
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• Image-text models excel at zero shot learning in image QA but MSRVTT 

Video QA.



Shortcut Hypothesis 
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Image-text models may be using 

shortcuts from text to hack the

VQA tasks.

Less focus on 

visual input

“Person might be caught 

in mid air on a sky”



Video captioning requires direct understanding on visual inputs,

but image-text models are weak on it.

Shortcut on Video Captioning
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Under resource constraints (model, data, supervision), how can we let

image-text models focus on videos for producing captioning?

Break Shortcut

6



RL supervision
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- We use CIDEr score as metric-based reward to reinforce video captioning.



Model Architecture
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- ViT + Q-Former + Flan-T5-XL

- Video inputs: multiple frames

- Frames embeddings were concatenated



Fine-tune InstructBLIP model on MSR-VTT-Caption dataset with

1) Post-Training with RL 2) updating Q-Former Only 

3) Moderate Video Quality

Optimal Recipe
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We achieved 2nd best against SoTA video captioners



Key Findings
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• RL Supervision:

Reinforcement learning (SCST) aligns captions with human preferences

Improved CIDEr scores by 3.4-6.5%



• RL Supervision:

RL achieves optimal performance very few epochs.

Key Findings
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• Model Scale:

Trainability hierarchy: Q-Former > LLM > ViT

Key Findings
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• Model Scale:

Mid-sized LLMs (e.g. 3B) work best for video captioning

Key Findings
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• Data Efficiency:

Larger image-text pretraining datasets provides good initializations

Key Findings
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• Data Efficiency:

Lower resolution (224x224) works efficiently

Key Findings
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• Data Efficiency:

Frame concatenation better captures temporality than averaging

Key Findings
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Qualitative Comparison: image-text model v.s. Ours
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Qualitative Comparison: image-text model v.s. Ours



- Identified shortcut in current image-text model’s visual understanding

- Key factors for recycling image-text model to video captioning

- Achieved top performance with minimal resources by RL

Summary

20
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