
AdaSearch: Many-to-One Unified Neural Architecture Search
via A Smooth Curriculum

Chunhui Zhang*, Yongyuan Liang*, Yifan Jiang*

Brandeis University, Sun Yat-sen University, University of Texas at Austin
chunhuizhang@brandeis.edu, liangyy58@mail2.sysu.edu.cn, yifanjiang97@utexas.edu

Abstract

The cost of Neural Architecture Search (NAS) has been largely
reduced, thanks to one-shot SuperNet methods that exploit
the weight-sharing strategy as the proxy. However, challenges
remain especially when we target for simultaneously deriving
many high-performance, yet diverse models that can meet
various resource constraints, by training just one SuperNet.
If we treat SuperNet as a large ensemble of all those candi-
date neural networks with highly varied complexity levels, a
fundamental question then arises: how might we train those
neural networks all (close) to their optimal performance, with
their weights entangled due to sharing, under one unified
optimization procedure? To tackle this question, we propose
AdaSearch, whose idea is inspired from curriculum learning.
Towards our end goal of training all neural networks well, we
start by focusing our SuperNet training on a “simple” subset
of them, i.e., training a shallow SuperNet that consists of only
low-complexity neural networks. We then iteratively grow and
train the SuperNet, so that higher-complexity neural networks
are gradually included and taken care of. For smoothly transit-
ing the SuperNet curriculum, we also develop a key enabling
technique called SuperNet2SuperNet, that is, using distilla-
tion to initialize the deeper SuperNet by inheriting knowledge
from the shallower one each time. AdaSearch demonstrates
state-of-the-art accuracy-efficiency trade-offs on ImageNet,
while significantly trimming down search GPU hours and CO2
emission by reducing N search times to 1 procedure. All our
codes and pre-trained models will be publicly released upon
paper acceptance.

Introduction
Improving neural architectures has been a key tenet in deep
learning. From AlexNet (Krizhevsky, Sutskever, and Hinton
2012), VGG (Simonyan and Zisserman 2014), to ResNet (He
et al. 2016): tremendous human efforts are spent on designing
better architectures. The latest exciting wave is led by Neural
Architecture Search (NAS) (Pham et al. 2018). Not only we
see new searched models keep boosting accuracy, but also
they are often more compact and efficient too. Early NAS
works exploit reinforcement learning or evolutionary search,
whose search costs are often prohibitively high (Zoph and
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Le 2016). Lately, the one-shot differentiable search (Liu, Si-
monyan, and Yang 2018; Dong and Yang 2019) introduce the
continuous relaxation of the architecture space, allowing effi-
cient search using gradient descent and drastically reducing
the number of architecture evaluations required. Their demon-
strated high efficiency in exploring a large search space, as
well as high performance achieved, make them the current
top workhorse in NAS.

Since the deployed platforms have various resource con-
straints (latency, memory, or energy), compared to discover-
ing one single architecture, it is practically more desirable
to obtain a series of models, that span over the accuracy-
efficiency spectrum with different trade-offs. That constitutes
new challenges for network design. The most naive solution
is to design or search for a cell structure and repeatedly stack
it to different depths, such as the ResNet family (He et al.
2016). An alternative goes for multiplying the channel width
by different ratios, such as the MobileNet family (Howard
et al. 2017). This design challenge also motivates the adop-
tion of NAS techniques: for example, the EfficientNet family
(Tan and Le 2019) searches for compound scaling ratios
across different dimensions, to scale up a base architecture.

From the above model family studies, one meaningful in-
spiration to draw is that larger and smaller neural networks
can share certain design patterns. Meanwhile, if we exam-
ine the most successful large and small networks designed
by hands, each has its design uniqueness, and the inherent
link between different complexity models appears to be more
intriguing than simply repeating or plain scaling. We take
DenseNet as an illustrative example: despite outperforming
ResNets, it is high-latency and memory-hungry to run due
to its heavier inter-connections than ResNet (Huang et al.
2017). As a result, state-of-the-art light-weight neural net-
works mostly follow the ResNet style while barely adopting
dense connections.

Recognizing the discrepancy, one might lean towards an-
other extreme, i.e., leveraging NAS to search for dedicated
models for different complexity targets. Nevertheless, the
resource consumption of doing so could become daunting.
For instance, a typical one-shot differentiable search (Wu
et al. 2019), with the weight-sharing proxy, takes 216 GPU
hours on a small proxy dataset in order to obtain one tar-
get architecture. Moreover, placing a specific latency loss is
prone to “architecture collapse” (Cheng et al. 2018; Chen



et al. 2019a), i.e., the sampled networks are of extremely low
latency but with poor accuracy. Overcoming this demands
carefully hand-tuning the penalty hyperparameter for each
latency, which adds to the workload.

Our Contributions
The goal of this paper is to improve the training of SuperNet
in one-shot differentiable neural architecture search, such that
many high-performance models, yet with diverse complexity
levels (e.g., FLOPS), can be derived simultaneously from the
same one trained SuperNet. Ideally in this way, we could
have models meeting various resource constraints, without
sacrificing each best achievable performance (e.g., if search-
ing dedicatedly for each complexity), while sharply trimming
down the search cost.

We start addressing this challenge, by viewing SuperNet as
a large ensemble of all those candidate networks with highly
varied complexity levels. Our fundamental question then
is: how might we collectively train those networks all (close)
to their optimal performance, with their weights entangled
due to sharing, under one unified optimization procedure? To
handle this complicated training (meta-)set, we are inspired
by the curriculum learning (CL) strategy (Bengio et al. 2009;
Hacohen and Weinshall 2019): CL was adopted to train deep
models, by first focusing training on an “easy” training subset
(often adaptively selected), that is then gradually grown to
the full set.

Following the CL idea, we consider all our different-
complexity candidate networks in a SuperNet to be (meta-
)training examples, naturally spanning over an easy-to-hard
order. Initially, we focus SuperNet training only on a “sim-
ple” subset of all candidate networks, i.e., training a shallow
SuperNet that consists of only low-complexity networks. Af-
terwards, we grow the search space to include more higher-
complexity networks and train them; this SuperNet curricu-
lum is repeated several times. At each transition between
this shallow-to-deep curriculum, we further develop a key
enabling technique called SuperNet2SuperNet, to smoothly
transmit knowledge from the shallower SuperNet to initial-
izing the deeper one, using knowledge distillation (Hinton,
Vinyals, and Dean 2015).

By taking the above strategies, AdaSearch is applied to
searching for a series of high-performance models of different
complexities, derived from only one well-trained SuperNet.
It demonstrates remarkable effectiveness, thanks to our novel
curriculum SuperNet training as well as SuperNet2SuperNet
transition. Our achieved state-of-the-art results include but
are not limited to: (a) 0.3% higher top-1 accuracy with 5%
fewer FLOPs than Efficient-B0; (b) 2.4% higher accuracy
than MobileNet-V3-Large with comparable model size; and
(c) similar accuracy/FLOP results with the latest FBNetV2
(Wan et al. 2020), but at sharply lower search costs.

Related Works
Efficient Neural Architecture Search An increasing
amount of works are proposed to speed NAS. ENAS (Pham
et al. 2018) introduces weight sharing among child models
to avoid training them each from scratch. DARTS (Liu, Si-
monyan, and Yang 2018) accelerates NAS by turning into a

continuous optimization that selects paths from a SuperNet.
That is later improved further in GDAS by sampling a subnet
from the SuperNet for training, using the Gumbel-softmax
trick (Dong and Yang 2019).

Several works explore how to make NAS “progressive”
and hence more efficient. PNAS (Liu et al. 2018) explored
the search space progressively by searching for operations
node-by-node within each cell, to reduce the number of archi-
tectures to evaluate. P-DARTS (Chen et al. 2019b) extends
a similar search manner to differentiable search, enabling
progressive search at the cell level to enlarge the depth of
searched architectures gradually during the training proce-
dure. Their motivations and algorithms are completely differ-
ent from ours and not to confused with AdaSearch, whose
focus is on training SuperNet with a smooth curriculum, and
then multiple one-shot derivations can be done. A concurrent
work (Guo et al. 2020) also involves the idea of curriculum
learning, however, targets building efficient sampling strat-
egy in the large search space. Different from that, AdaSearch
aims to reduce the multiple search procedures into one time
while obtaining several searched architectures serving for
various deployed platforms.

Search for Efficient Neural Architectures MnasNet (Tan
et al. 2019) considers the trade-off between accuracy and
mobile latency as the joint optimization objective. FBNet
(Wu et al. 2019), FBNetV2 (Wan et al. 2020), and Prox-
ylessNAS (Cai, Zhu, and Han 2018) directly incorporate
hardware feedbacks in the searching loop, to obtain practical
hardware-efficient models for target platforms. Slimmable
Network (Yu et al. 2018) proposes to train a single network
to support different widths via switchable batch normaliza-
tion, which was later extended to one-shot NAS for searching
channel numbers (Yu and Huang 2019). Lately, Once for
All (Cai, Gan, and Han 2019) trains a SuperNet and selects
specialized sub-networks from the SuperNet for different
accuracy-efficiency trade-offs, aided by a generalized prun-
ing method during search. Note that all the above methods
train their SuperNet/normal neural network completely from
end to end, without any curriculum. AdaSearch presents a
complementary effort to train SuperNet with a curriculum
learning scheme, which can be potentially combined with
those NAS methods.

Methodology
In this paper, we use differentiable NAS to optimize Su-
perNets with a designed curriculum searching process and
smoothly bridge the gap across diverse resource constraints.
Exploring in a more complex search space based on the prior
knowledge from a compact SuperNet is a non-trivial work
since it requires effective knowledge retaining techniques to
avoid architecture search getting stuck with bad local minima.
How to transfer the architecture and weight knowledge from
the prior compact SuperNet to improve the more complex
SuperNet training with much less cost than separately direct
searching different models is our core problem. In brief, the
goal is to progressively search for architectures that satisfy
different hardware demands using the searched structural
knowledge to improve both search efficiency and accuracy.



In this section, we introduce a curriculum SuperNet train-
ing (CST) framework to train SuperNets for target accuracy-
efficiency trade-offs. Then, we propose two techniques that
combined as CST to handle the common knowledge retaining
challenge in SuperNet progressive training.

Table 1: AdaSearch-A0 largest search space. The input res-
olution for models is 224–by-224. “tbs” denotes layer type
that needs to be searched and includes inverted residual block
types as operation candidates. Tuples of three values under
expansion rate and out channels filters represent the lowest
value, highest, and growth step (low, high, step). n refers
to the number of blocks. The search space grows up in the
following stages while the details of other space settings will
be shown in the Appendix.

Input block expansion rate channel filters num

2242 × 3 3x3 1 16 1
1122 × 16 tbs 1 (12, 16, 4) 1
1122 × 16 tbs (0.75, 3.75, 0.5) (16, 28, 4) 1
562 × 28 tbs (0.75, 3.75, 0.5) (16, 40, 8) 2
282 × 40 tbs (0.75, 4.25, 0.5) (48, 96, 8) 3
142 × 96 tbs (0.75, 4.5, 0.75) (72, 128, 8) 2
142 × 128 tbs (0.75, 5.25, 0.75) (112, 184, 8) 2
72 × 184 tbs (0.75, 5.25, 0.75) (112, 184, 8) 1
72 × 184 1x1 - 1280 1
1280 fc - 1000 1

Table 2: The operation candidates of block-type searching in
our framework.

op kernel se activation

ir k3 3 ✗ relu
ir k5 5 ✗ relu
ir k3 hs 3 ✗ hswish
ir k5 hs 5 ✗ hswish
ir k3 se 3 ✓ relu
ir k5 se 5 ✓ relu
ir k3 se hs 3 ✓ hswish
ir k5 se hs 5 ✓ hswish

Architecture Space Our framework contains an extraor-
dinary search space where block-type, channel filters, and
expansion ratio are jointly searched. In the block-type search,
we involve the kernel size, non-linear activation function,
and squeeze-and-excite layer, details are shown in Table 2.
In channel-level search, inspired by FBNetV2 (Wan et al.
2020), the number of output channels and the expansion rate
of operation candidates in each layer can be searched with
channel masking to constant the number of channel options.
To balance the efficiency and effectiveness, only two paths in
the SuperNet are sampled and trained each iteration to tackle
the search memory cost.

The main search procedure of our framework starts from
the very beginning stage, the size of the search space is shown
in Table 1. While gradually moving into the next search
period, the number of searchable layers, channel filters, and

block expansion ratio are all growing up, targeting a more
complex search space. The detailed hyperparameter settings
for discovering the obtained architectures (AdaSearch-A0 to
AN ) are shown in the Appendix.

Curriculum SuperNet Training
In the curriculum SuperNet training, we design an easy-to-
hard search space routine comprising multiple search stages
as shown in 2. In detail, to flexibly bridge the gap across
different hardware constraints, we propose to search Super-
Nets from small size to large size in a curriculum way. Firstly,
we start by directly searching the smallest SuperNet with
the minimum depth and width, named SuperNet-A0. The
first initial search stage takes short search time and memory
cost for the model with low-complexity. Then, we enlarge
the search space by increasing SuperNet-A0’s channels and
layers. In the next search stage, via our novel knowledge re-
taining techniques, the weights and architecture of searched
SuperNet-A0 are inherited by the larger SuperNet (named
SuperNet-A1) with larger depth and width dimension and
reused in SuperNet-A1 searching. The above process will
loop until the largest architecture is searched. In deeper peri-
ods, we can use the structural knowledge of shallow architec-
tures to optimize complex architectures that converge faster
than direct searching.

We show that the knowledge of architecture and weights
from a small but well-trained SuperNet can be used to speed
up and stabilize the larger new search space exploring. In the
following subsection, we describe the details of curriculum
SuperNet training’s two knowledge inheriting solutions for
AdaSearch: SuperNet2SuperNet and Progressive SuperNet
Distillation to consider the knowledge transfer between two
curriculum searching stages.

SuperNet2SuperNet To search a new larger network in
the further period, we enlarge the previous search space in-
cluding scaling the depth dimension in each stage and width
dimension in the convolution of each operation candidate.
Since the depth and width of the SuperNets in the two search
spaces do not match, the larger SuperNet cannot directly
inherit the parameters of the previously searched SuperNet
by simply loading the weights. Therefore, we present our
SuperNet2SuperNet, which smoothly initializes a new and
larger SuperNet using the previously searched SuperNet.

To place a layer with a wider layer, Net2WiderNet is used
to preserve the functionality of operations in the layer (Chen,
Goodfellow, and Shlens 2015). Considering a convolutional
layer with weight matrix Wl and the next convolutional
layer with weight matrix Wl+1. The component of Wl is
(wl, hl, il, ol), where the wl is filter width and hl is filter
height, while il and ol denote the number of input and output
channels. To replace this layer with a wider layer which has
out channels number ôl > ol, a random remapping function
f l is introduced and set as:

fl(j) =

{
j 1 ≤ j ≤ ol

random sample from {1, · · · , ol} ol<j≤ ôl
. (1)

Then we wider the Wl to Ŵl (with shape (wl, hl, il, ôl))
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according to function fl:

Ŵl[x, y, i, j] = Wl[x, y, i, fl(j)]. (2)

Meanwhile, we modified the weight Wl+1 of next convolu-
tional layer by reshaping its input channel. The new weight
matrix Ŵl+1 is given as:

Ŵl+1[x, y, j, k] =
Wl+1[x, y, fl(j), k]∣∣{z|fl(z) = fl(j)}

∣∣ . (3)

We refer to original paper for the more descriptions of Equa-
tion 3 (Chen, Goodfellow, and Shlens 2015).

To deeper the network, we transform the existing network
into a deeper one by adding new blocks at the end of every

downsampling stage. Each candidate convolutional layer in
a newly added block is initialized as an identity mapping by
setting the kernel to be an identity matrix while preserving
the operations between layers. To sum up, by the Super-
Net2SuperNet mechanism, we combine wider and deeper
operations to smoothly enlarge the architecture space and bet-
ter inherited the searched SuperNet in further search periods.

Progressive SuperNet Distillation To more efficiently
transfer knowledge of architectures and weights from trained
compact SuperNets, we adopt soft targets from previous
teacher SuperNet predictions to accelerate more complex stu-
dent SuperNet searches in the search phase above AdaSearch-



A0. Soft targets contribute to a better entropy regularization,
which guides the discovery of new higher capacity architec-
tures. We introduce soft labels Lsoft provided by the small
but well-trained SuperNet in the prior period and use hard
labels from the training dataset as defined in Lhard. Then
combine these two losses with a scaling ratio λ as the loss
function for classification in larger architecture optimization:

L = (1− λ)Lhard + λLsoft (4)

Moreover, in both update steps of architectures α and weights
w, knowledge distillation in structural knowledge provides ef-
fective supervision for inheriting architecture knowledge and
weight knowledge of the compact network into the new grow-
ing up network training. We initialize the λ as 0.5 and reduce
it to 0.05 linearly. It also benefits to smooth the span of Su-
perNet optimization in two contiguous progressive searching
periods.

Experiments
Implementation Details. We implement AdaSearch using
PyTorch (Paszke et al. 2019) on 8 Tesla V100 GPUs and use
a total batch size of 1024 on ImageNet 2012 classification
dataset (Deng et al. 2009). Following previous common set-
ting (Wu et al. 2019), we randomly sample 100 classes from
the original 1000 classes to reduce search cost. We adopt dif-
ferentiable search in our framework. When searching, weight
parameters w is trained on 5/6 of ImageNet-100 training set
using SGD with momentum, and the architecture parameters
α is trained on the rest 1/6 of ImageNet training set with
Adam optimizer(Kingma and Ba 2014). The SuperNet-A0
is trained for 100 epochs, then in each further period, we
sequentially grow up SuperNet-A1/A2/A3/A4 architecture
space and gradually train these more complex SuperNets
with 60 epochs following an easy-to-hard order adaptively
until the final stage finished.

Compared to State-of-the-Art
FLOPs-efficiency We summarized the top-1 accuracy on
ImageNet of models searched by AdaSearch, ranging from
100MFLOPs∼500MFLOPs and the comparison with state-
of-the-art NAS methods in Table 3. Our models outper-
form all existing networks under the same computational
FLOPs-efficiency constraints. As shown in Fig. 3, the models
searched by AdaSearch achieve 0.3%, 1.2% and 4.3% abso-
lute accuracy gains over EfficientNet-B0 (Tan and Le 2019),
MobileNetV3 (Howard et al. 2019) and ProxylessNAS (Cai,
Zhu, and Han 2018), respectively while maintaining similar
FLOPs. Furthermore, AdaSearch achieves competitive accu-
racy performance compared to the previous SOTA method:
FBNetv2 (Wan et al. 2020) yet saving much more search cost
in GPU hours, energy and carbon emission, which will be
detailedly reported in Table 4.

Parameter-efficiency Considering the edge-device stor-
age efficiency in real-world applications, hardware has strict
constraints in the model size. AdaSearch consistently mini-
mizes the parameter, which improves the trade-off between
accuracy and model-size by a significant margin compared

with other NAS methods. Figure. 4 shows the detailed re-
sults in the parameter-efficiency. In the comparison of small
size models (4M parameters), our model achieves 76.4%
accuracy, shown significant improvements over other small
models. With similar or much smaller model size in large
models (7M∼8M parameters), AdaSearch yields 2.9% accu-
racy higher than MobileNetV3 (Howard et al. 2019) and 1.5%
accuracy higher than FBNetV2 (Wan et al. 2020). Also, re-
training an AdaSearch normal network only costs 180 epochs
which are fewer than 360 epochs for FBNetV2 retraining.

Resource and Energy-efficiency From the perspective of
environmental cost, we calculate the GPU hours, energy and
CO2 emission (following (Strubell, Ganesh, and McCallum
2019). Benefiting from our curriculum training framework,
models for different efficiency constraints can be searched
without superfluous computational cost and energy consump-
tion while previous NAS methods require repeat searching
to adapt diverse hardware demands. From a small model that
has been searched, to search a larger model, AdaSearch only
needs a considerable small environmental cost. Therefore,
our total search cost increases linearly. Specifically, com-
pared to FBNetV2 (Wan et al. 2020), we find the models
maintaining similar or better performance with two thirds
fewer total GPU hours, energy, and CO2 emission, which is
demonstrated in Table 4. The significant reduction in com-
putational budgets greatly improves the practical impacts of
AdaSearch in various deployment scenarios.

Ablation Experiments
As illustrated in Figure 5, we compare AdaSearch with com-
pound scaling-up, naive progressive search, and separately
direct search in accuracy-FLOPs trade-offs. For a fair compar-
ison of the search framework, all the methods search under
the same search space and use the same search epochs except
direct search. In direct search, we separately trained SuperNet
100 epochs for each model.

By repeatedly scaling the width and depth of the searched
SuperNet-A0 using a designed multiplier, it is shown that our
AdaSearch substantially improves the flexibility of architec-
ture structure compared to compound scaling-up with more
than 2% accuracy improvement. Compared to naive progres-
sive search with randomly initializing new layers and directly
inheriting prior parameters, thanks to our knowledge retain-
ing techniques, AdaSearch achieves more than 1% better
accuracy than naive progressive search. With better super-
vision from the prior architectural knowledge, AdaSearch
finds more accurate models with efficient guidance from the
smaller searched model.

We further conduct an ablation study to evaluate the ef-
fectiveness of SuperNet2SuperNet and Progressive SuperNet
Distillation, results are shown in Figure 6. We combine both
techniques as CST and compare their performance under vari-
ous FLOPs constraints separately for analyses. In the very be-
ginning stage, those methods result in a similar performance.
However, when the SuperNet grows up, the proposed tech-
nics gradually outperform the baseline method due to much
more complexity of search space. These results demonstrate
the superiority of both Progressive SuperNet Distillation and
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SuperNet2SuperNet strategy.

Conclusion

We present AdaSearch, a flexible neural architecture search
scheme that trains models to fit diverse hardware constraints
via a shallow-to-deep training curriculum. Different from pre-
vious NAS methods, AdaSearch allows smoothly expanding
search space using our SuperNet2SuperNet mechanism to
adopt the deeper architecture search rather than naive pro-
gressive search. By inheriting structure knowledge from the
prior shallow architecture with knowledge distillation, we
achieve great performance and efficiency improvement in the
higher-complexity architecture search. The strong empirical
results on accuracy-efficiency trade-offs compare favorably
against state-of-the-art methods, which demonstrate the effec-
tiveness of AdaSearch. Moreover, attaching high importance
to computational and environmental costs, our method greatly
reduces the search cost compared to conventional NAS. We
will extend the proposed approaches under a more diverse
framework (e.g. no retrain required) in the future.
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Model Search Params FLOPs Top-1

Method Space Acc (%)

ShuffleNetV2 (Ma et al. 2018) manual - 2.1M 146M 69.4
MobileNetV3-small-1.3× (Howard et al. 2019) scaling - 5.0M 103M 70.5
AdaSearch-A0(ours) gradient layer-wise 2.3M 107M 71.2
ShuffleNetV2-1.1× (Ma et al. 2018) scaling - 2.6M 232M 72.3
FBNet-A (Wu et al. 2019) gradient layer-wise 4.3M 249M 73.0
FBNet-B (Wu et al. 2019) gradient layer-wise 4.5M 295M 74.1
FBNetV2-F4 (Wan et al. 2020) gradient layer-wise 4.0M 238M 76.0
AdaSearch-A1(ours) gradient layer-wise 3.4M 251M 76.4
ProxylessNAS-R (Cai, Zhu, and Han 2018) gradient/RL layer-wise 4.1M 320M 74.6
Single-path NAS (Guo et al. 2019) EA layer-wise 4.3M 365M 74.2
MobileNetV3-large-1.2× scaling - 7.5M 365M 76.2
EfficientNet-B0 (Tan and Le 2019) RL stage-wise 5.3M 390M 77.3
FBNetV2-L1 (Wan et al. 2020) gradient layer-wise 7.7M 325M 77.2
AdaSearch-A2(ours) gradient layer-wise 5.8M 369M 77.6
FBNet-1.2× (Wu et al. 2019) scaling - 6.5M 406M 74.6
ProxylessNAS-G (Cai, Zhu, and Han 2018) gradient/RL layer-wise 5.9M 465M 75.1
MobileNetV3-large-1.3× (Howard et al. 2019) scaling - 9.2M 434M 77.2
FBNetV2-L2 (Wan et al. 2020) gradient layer-wise 9.4M 422M 78.1
AdaSearch-A3(ours) gradient layer-wise 7.2M 435M 78.4
ShuffleNetV2-1.5× (Ma et al. 2018) scaling - 6.8M 540M 74.5
MnasNet-1.2× (Tan et al. 2019) scaling - 6.9M 553M 75.7
MobileNetV2-1.4× (Sandler et al. 2018) scaling - 8.9M 580M 75.7
MobileNetV3-large-1.4× (Howard et al. 2019) scaling - 13.0M 552M 77.4
AdaSearch-A4(ours) gradient layer-wise 8.4M 512M 78.7

Table 3: ImageNet classification performance. Compound scaling is applied on depth and width dimension.

Model Search Cost FLOPs
GPU Hours(h) Energy (kWh) CO2e (lbs)

ProxylessNAS-R (Cai, Zhu, and Han 2018) 200.0 59.46 59.46 320M
ProxylessNAS-G (Cai, Zhu, and Han 2018) 200.0 59.46 59.46 465M
ProxylessNAS-G (Cai, Zhu, and Han 2018) 200.0 59.46 59.46 487M
Total-cost 600.0 178.38 178.38 -

FBNetV2-F4 (Wan et al. 2020) 216.0 64.21 61.26 238M
FBNetV2-L1 (Wan et al. 2020) 648.0 192.63 183.78 325M
FBNetV2-L2 (Wan et al. 2020) 648.0 192.63 183.78 422M
Total-cost 1512.0 449.47 428.82 -

AdaSearch-A0(ours) 89.6 26.75 25.52 107M
AdaSearch-A1(ours) 89.6+74.4=164.0 26.75+22.19=48.94 25.52+21.17=46.69 251M
AdaSearch-A2(ours) 164.0+87.2=251.2 48.94+25.97=74.91 46.69+24.77=71.46 369M
AdaSearch-A3(ours) 251.2+96.8=348.0 74.91+28.94=103.85 71.46+27.61=99.07 435M
AdaSearch-A4(ours) 348.0+108.0=456.0 103.85+32.11=135.96 99.07+30.63=129.70 512M
Total-cost (ours) 456.0 135.96 129.70 -

Table 4: Searching cost and energy consumption on ImageNet. AdaSearch obtains all architecture (A0-A4) in one procedure
thus saves energy and searching time compared to others.



Table 5: AdaSearch-A1 largest search space.

Input block expansion rate channel filters num

2242 × 3 3x3 1 16 1
1122 × 16 tbs 1 (12, 16, 4) 1
1122 × 16 tbs (0.75, 3.75, 0.5) (16, 32, 4) 2
562 × 28 tbs (0.75, 3.75, 0.5) (16, 48, 8) 3
282 × 40 tbs (0.75, 4.25, 0.5) (48, 104, 8) 4
142 × 96 tbs (0.75, 4.5, 0.75) (72, 136, 8) 3
142 × 128 tbs (0.75, 5.25, 0.75) (112, 224, 8) 2
72 × 184 tbs (0.75, 5.25, 0.75) (112, 256, 8) 1
72 × 184 1x1 - 1280 1
1280 fc - 1000 1

Table 6: AdaSearch-A2 largest search space.

Input block expansion rate channel filters num

2242 × 3 3x3 1 16 1
1122 × 16 tbs 1 (12, 16, 4) 1
1122 × 16 tbs (0.75, 4.75, 0.5) (16, 36, 4) 2
562 × 28 tbs (0.75, 4.75, 0.5) (16, 56, 8) 3
282 × 40 tbs (0.75, 5.25, 0.5) (48, 112, 8) 4
142 × 96 tbs (0.75, 5.25, 0.75) (72, 144, 8) 4
142 × 128 tbs (0.75, 5.25, 0.75) (112, 256, 8) 4
72 × 184 tbs (0.75, 5.25, 0.75) (112, 256, 8) 2
72 × 184 1x1 - 1280 1
1280 fc - 1000 1

Table 7: AdaSearch-A3 largest search space.

Input block expansion rate channel filters num

2242 × 3 3x3 1 16 1
1122 × 16 tbs 1 (12, 16, 4) 1
1122 × 16 tbs (0.75, 4.75, 0.5) (16, 36, 4) 3
562 × 28 tbs (0.75, 5.25, 0.5) (16, 64, 8) 3
282 × 40 tbs (0.75, 5.25, 0.5) (48, 128, 8) 4
142 × 96 tbs (0.75, 5.25, 0.75) (72, 160, 8) 5
142 × 128 tbs (0.75, 6, 0.75) (112, 256, 8) 4
72 × 184 tbs (0.75, 6, 0.75) (112, 336, 8) 2
72 × 184 1x1 - 1280 1
1280 fc - 1000 1

Table 8: AdaSearch-A4 largest search space.

Input block expansion rate channel filters num

2242 × 3 3x3 1 16 1
1122 × 16 tbs 1 (12, 16, 4) 1
1122 × 16 tbs (0.75, 5.75, 0.5) (16, 40, 4) 3
562 × 28 tbs (0.75, 5.75, 0.5) (16, 64, 8) 3
282 × 40 tbs (0.75, 5.75, 0.5) (48, 128, 8) 5
142 × 96 tbs (0.75, 6, 0.75) (72, 160, 8) 5
142 × 128 tbs (0.75, 6, 0.75) (112, 256, 8) 6
72 × 184 tbs (0.75, 6, 0.75) (112, 336, 8) 3
72 × 184 1x1 - 1280 1
1280 fc - 1000 1
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