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ABSTRACT

Graph Neural Networks (GNNs) have demonstrated a great repre-
sentation learning capability on graph data and have been utilized
in various downstream applications. However, real-world data in
web-based applications (e.g., recommendation and advertising) al-
ways contains bias, preventing GNNs from learning fair representa-
tions. Although many works were proposed to address the fairness
issue, they suffer from the significant problem of insufficient learn-
able knowledge with limited attributes after debiasing. To address
this problem, we develop Graph-Fairness Mixture of Experts (G-
Fame), a novel plug-and-play method to assist any GNNs to learn
distinguishable representations with unbiased attributes. Further-
more, based on G-Fame, we propose G-Fame++, which introduces
three novel strategies to improve the representation fairness from
node representations, model layer, and parameter redundancy per-
spectives. In particular, we first present the embedding diversified
method to learn distinguishable node representations. Second, we
design the layer diversified strategy to maximize the output dif-
ference of distinct model layers. Third, we introduce the expert
diversified method to minimize expert parameter similarities to
learn diverse and complementary representations. Extensive exper-
iments demonstrate the superiority of G-Fame and G-Fame++ in
both accuracy and fairness, compared to state-of-the-art methods
across multiple graph datasets.
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1 INTRODUCTION

In recent years, GNNs have gained a significant of attentions on var-
ious web-based applications, including node classification [37, 44],
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link prediction [56, 57], scene graph reasoning [6, 53], and rec-
ommendation system [12, 46, 47]. Most GNNs leverage message
passing, a fundamental technique introduced by [16], to perform cal-
culations and make predictions. However, message passing-based
GNNs are vulnerable to sensitive attributes (e.g. race, gender, and
nationality) [9, 22], which leads to unfair graph representations.
Furthermore, message passing exacerbates the unfair learning given
nodes aggregate sensitive attributes from their neighbors. Hence,
it is necessary to come up with effective graph fairness algorithms
to overcome the vulnerability issue and fairness problem in graph
representation learning [8] .

Numerous works have been proposed to address the fairness
problem on GNNs, where the concentrations can be mainly divided
into two categories: individual fairness [14] and group fairness [3].
Individual fairness methods ensure to generate similar predictions
to similar nodes [1, 33], while group fairness approaches assign
equal weights to different groups so that no group receives any
preference [3, 21, 23]. Later, some studies [7, 30, 49] have been pro-
posed to solve the graph fairness problem via a dyadic approach,
which requires the prediction of two groups to be completely in-
dependent of their sensitive attributes. Most of the existing algo-
rithms construct an augmented graph by deleting biased attributes
or removing prejudiced information [30, 39], resulting in limited
learnable knowledge and discouraging GNNs from learning more
distinguishable representations.

For investigating the limited learnable knowledge, we begin by
comparing the statistical distributions between the latent node
representations on the standard graph and the fairness-aware aug-
mented graph. As shown in Figure 1, the statistical distributions
of the input graph under standard and fairness settings are quite
similar. In addition, the running variables generated by the model
during fairness training are grouped together (i.e., the points are
overlapped) while more diverse on standard training (i.e., points
are well dispersed). Compared to the distribution of the standard
setting, the batch normalization distribution under the fairness set-
ting lacks representation diversity across different model layers,
providing deficient learnable knowledge. Therefore, it is challeng-
ing to maintain the performance of graph fairness training with
limited knowledge on fairness augmented graphs, compared to the
standard training.

To address the challenge of the limited learnable knowledge on
fairness training, we develop Graph-Fairness Mixture of Experts
(G-Fame), a novel plug-and-play method to assist any GNNs learn
distinguishable representations with unbiased attributes. In par-
ticular, G-Fame is composed of multiple expert neural networks
that each contains its own parameters to learn different knowledge
for diversifying node representations. In addition, to improve the
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Figure 1: Distributions of node representations generated by twoGNNs trained on standard graphs and fairness-aware augmented

graphs. These two distributions are remarkably similar in figure (a). However, as layer grows deeper and deeper, in figure (b)

and figure (c), as the model becomes more complex, the differences between the two distributions grow.

model resistance against deficiency of learnable knowledge, we pro-
pose G-Fame++, in which we design three different strategies from
different perspectives: (1) from node representation perspective,
we introduce embedding diversity regularization to enable nodes
to capture more different information from their neighbors during
the message passing process; (2) from layer perspective, we design
layer diversity regularization to diversify the outputs of different
layers so that the shallow layers and deeper layers can obtain dis-
parate representations; (3) from the parameter weight redundancy
perspective, we present expert weight regularization to diversify
the weight parameters of experts so that each of them can capture
different information. To summarize, our contributions lie in the
following aspects:
• To the best of our knowledge, this paper is the first attempt to
study the deficiency of learnable information under the fairness
setting. We discover that the standard and fairness-aware aug-
mented graphs contain different statistical distributions, making
it challenging for current GNNs to learn.

• To address the problem, we propose G-Fame, a novel plug-and-
play method to assist any GNNs learn distinguishable represen-
tations. In addition, we propose G-Fame++ to further improve
the diversity by designing three regularization methods from
perspectives of node representations, model layer, and parameter
redundancy.

• Extensive experiments on multiple datasets demonstrate the su-
periority of G-Fame and G-Fame++ over state-of-the-art methods
across different AUC/accuracy and fairness metrics on fairness
graph learning.

2 RELATEDWORK

Graph Neural Networks. In recent years, numerous GNNs [5,
13, 19, 27, 28, 43, 54] were proposed to encode complicated graph-
structured data, which utilize the message-passing mechanism to
learn node representations. For instance, GAT [43] develops an at-
tention mechanism to aggregate features from nodes with different
weights. GraphSAGE [19] is a framework for inductive learning
that implements an efficient aggregation function to learn node
representations from neighbor nodes. DeepGCNs [28] and GCNII
[5] try to alleviate the over-smoothing problem by aggregating ad-
jacent nodes frommulti-hop via residual connections. This message

passing paradigm relies on node features and graph structures to
learn expressive representations [24, 40, 41]. Recently, Mixture-of-
Experts is also introduced into GNN for more robust graph repre-
sentation [55]. However, in situations where node features contain
sensitive attributes, the performance of GNNs is jeopardized by
unfair predictions based on biased inputs. In this paper, we propose
to enhance the model capacity in handling sensitive node attributes
and producing fair predictions.
Fair Graph Representation Learning. Though fairness repre-
sentation has become increasingly popular in recent years, studies
under fair graphs learning are still underdeveloped [8, 45]. The ma-
jority of contemporary works attempt to resolve fairness issues on
graphs via fairness-aware augmentations or adversarial training. In
particular, [36] proposed Fairwalk, a random walk-based algorithm
that aims to address the fairness issues in graph node embedding
method node2vec [18]. [31] utilized adversarial training tominimize
the marginal difference between vertex representations. Followed
by that, [2, 11] focused on using GANs [17] to learn fair graph
embeddings and encourage classifier assigning unbiased weight to
different groups [35]. In addition, multiple fairness methods have
been designed and applied to various graph applications such as fair
private learning [10, 15] and fair recommendation [4, 50]. However,
none of those fairness algorithms has been considered to address
the insufficient learnable knowledge of graphs. Hence, we propose
to enrich the learnable information from fair graph representation
learning.

3 PRELIMINARIES

Fairness-Based Graph Augmentation. Let𝑀 denote a mask for
the adjacency matrix. We define each element𝑚𝑖 𝑗 ∈ 𝑀 as follows:

𝑚𝑖 𝑗 =

{
1 𝑠𝑖 ≠ 𝑠 𝑗 ∀𝑖, 𝑗 ∈ N
0 otherwise , (1)

where𝑚𝑖 𝑗 = 1 represents that two nodes with different sensitive
attributes are connected, whereas 𝑚𝑖 𝑗 = 0 represents that two
nodes sharing the same sensitive attributes are disconnected. 𝑀
is utilized to mask the original adjacency matrix and encourages
message passing between different minority and majority groups.
As a result, GNNs trained on the modified 𝑀 are able to produce
more diverse and fair representations than standard graphs that are
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not modified. Based on the fairness-aware mask𝑀 , a randomized
response component 𝑟𝑟 (·) is utilized to adjust the strength of the
fairness-aware adjacency modification, which can be integrated as
follows:

𝑟𝑟 (𝑚𝑖 𝑗 ) =
{
𝑚𝑖 𝑗 with probability: 𝑝 (𝑚𝑖 𝑗 ) = 1

2 + 𝛿

1 −𝑚𝑖 𝑗 with probability: 𝑝 (1 −𝑚𝑖 𝑗 ) = 1
2 − 𝛿

,

(2)

where 𝛿 ∈ [0, 12 ]. Lastly, the unfair connections (i.e., connecting
nodes with the same sensitive attributes) are dropped from the
original adjacency matrix:

𝐴𝑓 𝑎𝑖𝑟 = 𝐴 ◦ 𝑟𝑟 (𝑀), (3)

where 𝐴𝑓 𝑎𝑖𝑟 denotes the resulting matrix after dropping the unfair
edges and ◦ indicates the Hadamard product between the original
matrix 𝐴 and the fairness-aware mask𝑀 . Specifically, with 𝑟𝑟 (𝑀),
the algorithm promotes fairness by dropping edges between nodes
with the same sensitive attributes (i.e., 𝑠𝑖 = 𝑠 𝑗 ). When 𝛿 = 1

2 , the
probability of𝑚𝑖 𝑗 is 1, whichmeans removing all unfair connections
(i.e., those connecting nodeswith the same sensitive attributes) from
the original graph. Consequently, regardless of the value of 𝛿 , the
total amount of information in the graph is always decreasing after
the mask’s modification.
Fairness Training. Given a training dataset D and a model 𝑓\ (·)
where \ denotes the model parameters. Fairness training tries to
learn distinguishable fair representations under fairness constraints,
which can be expressed as the following constraint optimization
problem:

min
\

L(D;\ ) + _∥\ ∥22, s.t. Ω(D;\ ) < 0, (4)
where L(D;\ ) represents the loss of any downstream tasks (e.g.,
the link prediction for recommendation systems), ∥\ ∥22 denotes 𝐿2
regularizer, and _ is a coefficient to adjust its importance. In addi-
tion, the fairness constraint Ω(·) is often defined as the covariance
between sensitive attributes and the signed distance of the feature
vectors to the decision boundary [51, 52].
Mixture of Experts.Mixture of Experts [38] uses a gating network
that decomposes a dense layer into a list of expert subnetworks,
𝐸1, 𝐸2, ..., 𝐸𝑛 , which are trained to process each corresponding task
under individual subset. A gating network is developed to select
an optimal combination of the expert subnetworks based on the
output of each expert. Given the input 𝑥 , we denote the output of
the gating network as𝑄 (𝑥) = {𝑞𝑖 (𝑥)}𝑛𝑖=1 and the 𝑖-th expert output
as 𝐸𝑖 (𝑥). The output of the MoE module 𝑦 can be formulated as:

𝑦 =
∑︁
𝑖∈A

𝑞𝑖 (𝑥)𝐸𝑖 (𝑥), (5)

where 𝑛 denotes the number of experts and A indicates the set
of activated top-𝑘 expert subnetworks. The gating network 𝑄 (𝑥)
enables the activated experts to have the same size as the normal
network, hence promoting the efficient learning of a large network.
In particular, we calculate the gate value for 𝑖−th expert as follows:

𝑞𝑖 (𝑥) =
exp(𝐻 (𝑥)𝑖 )∑𝑁
𝑗=0 exp(𝐻 (𝑥) 𝑗 )

, (6)

where 𝐻 (𝑥) denotes a function to compute the weight of each
expert given the current input 𝑥 , and𝐻 (𝑥)𝑖 ,𝐻 (𝑥) 𝑗 indicate the 𝑖-th

and 𝑗-th value of the obtained weight of the corresponding expert
in the current layer, respectively.

4 METHODOLOGY

In order to address the fairness training problem mentioned in the
introduction, we first present G-Fame, a novel mechanism that can
aid any GNNs in learning distinguishable representations under
the fairness setting (Figure 2 (a)). Based on G-Fame, we then design
G-Fame++ to comprehensively alleviate the deficiency of learnable
information caused by fairness-aware augmented graphs via three
regularizers, including i) an embedding diversity regularization to
learn distinguishable node representations (Figure 2 (b)); ii) a layer
diversity regularization tominimize the similarity between different
layers (Figure 2 (c)); and iii) an expert diversity regularization to
reduce expert parameter redundancy (Figure 2 (d)).

4.1 G-Fame: Graph-Fairness Mixture of Experts

The pipeline of G-Fame is shown in Figure 2 (a). G-Fame can be
applied to any GNNs by substituting each GNN layer with a plug
and play G-Fame layer, in order to learn distinct representations.
Each G-Fame layer introduces multiple expert networks and only
activates a subset of them for each input, while each expert is able
to capture different aspects of knowledge and learn distinguishable
representations. Specifically, given a graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is
the node set and 𝐸 is the edge set, we extract the node feature vector
𝑋𝑣 for each node 𝑣 ∈ 𝑉 . We initialize the input feature ℎ (0)𝑣 = 𝑋𝑣 .
Subsequently, in order to obtain the learned node representations,
G-Fame combines the features of neighboring nodes and then ag-
gregates them to the target node via message passing. This learning
procedure can be formulated as follows:

ℎ
(𝑙 )
𝑣 = COMBINE

(
G-FAME(𝑙 ) (ℎ (𝑙−1)𝑣 ),𝑚 (𝑙 )

𝑣 )
)
, (7)

𝑚
(𝑙 )
𝑣 = AGGREGATE

({
G-FAME(𝑙 ) (ℎ (𝑙−1)𝑢 ),∀𝑢 ∈ 𝑁 (𝑣)

})
, (8)

where ℎ (𝑙 )𝑣 represent the feature vectors of node 𝑣 at 𝑙-th layer,𝑚 (𝑙 )
𝑣

indicates themessage aggregated to node 𝑣 at 𝑙-th layer,N𝑢 is the set
of neighbouring nodes for node 𝑢. AGGREGATE(·), COMBINE(·)
are the aggregation and combination functions, respectively. In
detail, the 𝑙-th G-Fame layer is consist of a set of 𝑛 expert fully-
connected networks W (𝑙 ) = {𝑊 (𝑙 )

𝑖
(·)}𝑛

𝑖=0 and a gating network
𝑄 (𝑙 ) (·) = {𝑞 (𝑙 )

𝑖
(·)}𝑛

𝑖=1. Then, we formulate the 𝑙-th G-Fame layer
as follows:

G-FAME(𝑙 ) (ℎ (𝑙−1)𝑣 ) =
∑︁

𝑖∈A (𝑙 )

𝑞
(𝑙 )
𝑖

(ℎ (𝑙−1)𝑣 )𝑊 (𝑙 )
𝑖

(ℎ (𝑙−1)𝑣 ), (9)

where A (𝑙 ) indicates the set of activated top-𝑘 expert networks at
𝑙-th G-Fame layer.

4.2 G-Fame++: Diversifying Representations

From All Levels

To further enhance the representation diversity of G-Fame, we
introduce G-Fame++ with three novel regularization-based strate-
gies including embedding diversity regularization, layer diversity
regularization, and expert diversity regularization.
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hypersphere. The overall loss is consist of original downstream task loss regularized by (b), (c), (d) three components.

Embedding diversity regularization. To enrich the diversity
of learned node embeddings, we aim to maximize the agreement
between nodes that are proximate to each other (i.e., within 𝑟 -hop
neighborhood) while pushing away the irrelevant nodes that are
far away. In particular, given a node 𝑣𝑖 ∈ 𝑉 and a node 𝑣 𝑗 ∈ N (𝑣𝑖 ),
whereN(𝑣𝑖 ) is a set of r-hop neighbor nodes of node 𝑣𝑖 , we denote
the representations of node 𝑣𝑖 and 𝑣 𝑗 as positive pair {𝑧𝑖 , 𝑧 𝑗 }. In
addition, we randomly select a different node 𝑣𝑘 such that 𝑘 is not
within the 𝑟 -hop neighborhood of node 𝑣𝑖 , i.e., 𝑘 ≠ 𝑖 and 𝑣𝑘 ∉

N(𝑣𝑖 ). Next, we consider the representations of node 𝑣𝑖 and 𝑣𝑘 as
negative pair {𝑧𝑖 , 𝑧𝑘 }. Then, we bring positive pairs together while
maximizing the distance between negative pairs. The procedure is
formulated as follows:

L𝐸𝐷 = − log
∑

𝑣𝑗 ∈𝑉 exp(sim(𝑧𝑖 , 𝑧 𝑗 )/𝜏)∑
𝑣𝑘 ∈𝑉 exp(sim(𝑧𝑖 , 𝑧𝑘 )/𝜏)

, (10)

where L𝐸𝐷 denotes the obtained embedding diversity regulariza-
tion loss, 𝜏 is the temperature parameter, and 𝑧𝑖 , 𝑧 𝑗 are node rep-
resentations of nodes 𝑣𝑖 and 𝑣 𝑗 , respectively. The function sim(·)
calculates the similarity between two node feature vectors, i.e.,
sim(𝑧𝑖 , 𝑧 𝑗 ) = 𝑧⊤

𝑖
𝑧 𝑗/(| |𝑧𝑖 | |2 | |𝑧 𝑗 | |2).

Layer diversity regularization.Due to the deficiency of learnable
knowledge in fairness-aware augmentations caused by high cross-
layer similarities, we design a layer diversity regularizer to diversify
each layer. In particular, layer diversity regularizer maximizes the

output difference across distinct layers and enlarges the discrepancy
of learned information between layers:

𝑟𝑐𝑜𝑠𝑖𝑛𝑒 (𝑧𝑙𝑎 , 𝑧𝑙𝑏 ) =
1
|𝑉 |

∑︁
𝑣𝑖 ∈𝑉

|𝑧𝑙𝑎
𝑖

⊤
𝑧
𝑙𝑏
𝑖
|

| |𝑧𝑙𝑎
𝑖
| |2 | |𝑧𝑙𝑏𝑖 | |2

, (11)

where 𝑟𝑐𝑜𝑠𝑖𝑛𝑒 (𝑧𝑙𝑎 , 𝑧𝑙𝑏 ) denotes the obtained cosine similarity, 𝑁 is
the total number of nodes, and 𝑧𝑙𝑎 , 𝑧𝑙𝑏 are the learned embeddings
from layer 𝑙𝑎 and layer 𝑙𝑏 , respectively. Intuitively, similar cross-
layer embeddings indicate that the model cannot diversify different
layers and learn distinctive representations for each layer, result-
ing in poor performance. Therefore, we introduce the contrastive
regularization to boost the diversity of cross-layer embeddings and
further improve the model learning capability. The regularization
term can be defined as follows:

𝑟𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (𝑧𝑙𝑎 , 𝑧𝑙𝑏 ) = − 1
|𝑉 |

∑︁
𝑣𝑖 ∈𝑉

log
exp(𝑧𝑙𝑎

𝑖

⊤
𝑧
𝑙𝑏
𝑖
)

exp(𝑧𝑙𝑎
𝑖

⊤
𝑧
𝑙𝑏
𝑖
) + exp(𝑧𝑙𝑎

𝑖

⊤
(
∑

𝑗≠𝑖 𝑧
𝑙𝑏
𝑗

𝑛−1 ))
,

(12)

where 𝑟𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (𝑧𝑙𝑎 , 𝑧𝑙𝑏 ) is the calculated cross-layer embedding
diversity. The rationale behind the contrastive regularization is that
it increases the discrepancy between different layers and enforces
each layer to learn unique representations. In addition, it improves
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the learning capacity of each layer by pulling the same node embed-
dings across layers together while pushing away the embeddings
of different nodes. The overall objective function of the all-layer
diversity regularization L𝐿𝐷 is defined as:

L𝐿𝐷 =
∑︁

𝑙𝑎,𝑙𝑏 ∈𝐿 |𝑎≠𝑏
𝑟𝑐𝑜𝑠𝑖𝑛𝑒 (𝑧𝑙𝑎 , 𝑧𝑙𝑏 ) + 𝑟𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (𝑧𝑙𝑎 , 𝑧𝑙𝑏 ), (13)

where 𝐿 denotes a set of all layers in our model.
Expert diversity regularization. Although G-Fame is able to
learn fairness information via a large number of experts, redun-
dant parameters naturally exist among different experts, prevent-
ing the model from obtaining further diversified learnable infor-
mation. Even worse, the limited learnable knowledge in fairness
based augmented graphs induces each expert to obtain similar rep-
resentations. Hence, to reduce the expert parameter redundancy,
we present expert diversity regularization to maximize the differ-
ence among experts and obtain expert-wise diversified representa-
tions. Specifically, we introduce minimum hyperspherical separa-
tion (MHS) [32] to maximize the separation distance among expert
weight vectors:

max
{�̂�1,...,𝑊𝑚 }∈S𝑡−1

{LMHS (Ŵ) := min
𝑖≠𝑗

𝜌 (�̂�𝑖 ,�̂�𝑗 )}, (14)

where LMHS (·) is the separation distance between each weight
vector inW = [𝑊1,𝑊2, ...,𝑊𝑚]. We define �̂�𝑖 =

vec(𝑊𝑖 )
| |vec(𝑊𝑖 ) | |2 which

means vectorizing one expert weight matrix𝑊𝑖 then project it onto
a unit hypersphere S𝑡−1 := {�̂� ∈ R| | |�̂� | |2 = 1}, and 𝜌 (·, ·) repre-
sents the shortest distance between two vertices. Accordingly,MHS
benefits G-Fame from the following two aspects: 1) reducing the
parameter redundancy of experts and facilitating the model to learn
diversified learnable information; 2) empowering the model with
better optimization and generalization ability (as shown in Figure
5). The overall loss functionLG-Fame++ for G-Fame++ is the summa-
tion of the ground truth cross-entropy loss L𝐺𝑇 , node embedding
diversity regularization L𝐸𝐷 , layer-wise diversity regularization
L𝐿𝐷 , and expert weight diversity regularization L𝑀𝐻𝑆 :

LG-Fame++ = L𝐺𝑇 + L𝐸𝐷 + L𝐿𝐷 + L𝑀𝐻𝑆 . (15)

5 EXPERIMENT

In this section, we conduct extensive experiments to validate the
effectiveness of G-Fame and G-Fame++. In addition, we show the
ablation study, expressivity analysis, representation diversity anal-
ysis, and optimization landscape visualization to demonstrate the
superiority of the proposed models in the fairness setting.

5.1 Experiment Setup

Datasets and Baseline Models.We test the performance of our
methods on three benchmark graph datasets, i.e., 𝐶𝑜𝑟𝑎, 𝐶𝑖𝑡𝑒𝑆𝑒𝑒𝑟
and 𝑃𝑢𝑏𝑀𝑒𝑑 . The details of the datasets is shown in Appendix C.3.
For baselines, we compare with general GNN models GCN [27],
GAT [43], GIN [48], GraphSAGE [19] as well as graph fairness
learning methods DropEdge [37] and FairDrop [39]. Besides, we
apply two data augmentation techniques on general GNN models,
i.e., node feature masking and edge drop.
Evaluations Metrics. We utilize AUC/accuracy and fairness met-
rics to evaluate our models. For AUC/accuracy metrics, we leverage
accuracy and area under curve (AUC). For fairness metrics, we

use Demographic Parity (DP) [21] and Equalized Odds (EO) [20].
Specifically, DP determines the dependency of model predictions
on sensitive attributes. EO evaluates whether the subjects have the
same true positive rates and false positive rates across protected
and unprotected groups. Additional details of evaluation metrics
are illustrated in Appendix B.
Implementation Details. We report the mean and standard devi-
ation of ten independent runs with different data splits and random
seeds. We use three experts in each layer and incorporate two G-
Fame layers for our model design. In addition, we set learning rate
to 0.01, epoches to 1000, and noisy gate rate to 0.01. We use Adam
[25] to optimize the model. Both G-Fame and G-Fame++ are imple-
mented in PyTorch and trained on NVIDIA V100 GPUs. Detailed
hyperparameters are shown in Table 3 of Appendix A due to the
limited space.

5.2 Overall Result Comparison

We conduct link prediction experiments to evaluate theAUC/accuracy
and fairness of the proposed methods, which are reported in Ta-
ble 1). According to the table, we can find that general GNNs (i.e.,
GCN, GAT) cannot perform well in both standard and fairness set-
tings, with a lower ranking in AUC/accuracy and fairness metrics.
GNNs with EdgeDrop have a large improvement in performance
across all datasets but still fall behind in fairness metrics. On the
other hand, fairness algorithms (e.g., FairAdj and GNNs + FairDrop)
generally achieve better fairness than AUC and accuracy results.
For example, FairAdj with 𝑇2 = 20 achieves satisfactory results
under 𝐷𝑃𝑚 metric. However, the decent fairness obtained by these
fairness algorithms comes with a large sacrifice on AUC/accuracy,
with poor ranking compared to other baselines. Finally, we observe
that G-Fame can outperform other baselines by remarkable mar-
gins, which demonstrates the effectiveness of the MoE mechanism.
In addition, by incorporating the three proposed regularization
strategies, G-Fame++ achieves the best overall AUC/accuracy and
fairness under eight evaluation metrics, with average rankings of 1,
1, and 1.5 for 𝐶𝑜𝑟𝑎, 𝐶𝑖𝑡𝑒𝑆𝑒𝑒𝑟 , and 𝑃𝑢𝑏𝑀𝑒𝑑 , respectively.

5.3 Ablation Study

Since we propose G-Fame to learn distinguishable representations
and present G-Fame++ with different regularization strategies to
further improve the diversity, we conduct the ablation study to
validate their effectiveness by answering the following questions:
1) Does G-Fame layer learn more fair features than baselines? and
2) Does G-Fame++ benefit from the proposed three regularizations?
The associated results are shown in Table 2.
Does G-Fame layer learn more fair features than baselines?

To answer this question, we replace all G-Fame layers with standard
GCNConv layers taken from the backbone, disabling the usage
of the MoE mechanism in our model. As shown in Table 2, the
absence of G-Fame layer causes the model to lose a significant
amount of accuracy (i.e., 5.5% on𝐶𝑜𝑟𝑎, 12.5% on𝐶𝑖𝑡𝑒𝑆𝑒𝑒𝑟 , and 4% on
𝑃𝑢𝑏𝑀𝑒𝑑), which demonstrates the effectiveness of MoE mechanism
in our model. In addition, replacing G-Fame layer leads to worse
AUC/accuracy and fairness results, which further indicates the
importance of G-Fame layer in facilitating the model’s ability to
diversify learned fair representations.
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Table 1: Overall results of our proposed G-Fame, G-Fame++with a number of baselines. Bold indicates the best performance and

underline indicates the runner-up. 𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 and 𝑃 . denote the performance of accuracy and AUC. 𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 and 𝐹 . denote

the fairness metric of Δ𝐷𝑃𝑚 , Δ𝐸𝑂𝑚 , Δ𝐷𝑃𝑔 , Δ𝐸𝑂𝑔 , Δ𝐷𝑃𝑠 , and Δ𝐸𝑂𝑠 . 𝐴𝑣𝑔. of 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 denote the average of the overall performance

ranking and overall fairness ranking.

Method 𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 𝑅𝑎𝑛𝑘𝑖𝑛𝑔

Acc. ↑ AUC ↑ Δ𝐷𝑃𝑚 ↓ Δ𝐸𝑂𝑚 ↓ Δ𝐷𝑃𝑔 ↓ Δ𝐸𝑂𝑔 ↓ Δ𝐷𝑃𝑠 ↓ Δ𝐸𝑂𝑠 ↓ 𝑃 . 𝐹 . 𝐴𝑣𝑔.

Link prediction on 𝐶𝑜𝑟𝑎
GCN [27] 81.0±1.1 88.0±1.0 53.5±2.4 34.8±5.0 13.6±3.2 17.7±4.1 88.3±3.3 100.0±0.0 6 6 6
GAT [43] 80.2±1.4 88.3±1.1 54.9±2.9 39.6±4.1 12.2±2.5 16.5±3.4 90.9±3.5 100.0±0.0 7 9 8
GCN+EdgeDrop [37] 82.4±0.9 90.1±0.7 56.4±2.4 36.5±4.3 12.3±2.6 15.4±3.3 90.2±2.7 100.0±0.0 3 8 5.5
GAT+EdgeDrop [37] 80.5±1.2 88.3±0.8 53.7±2.5 37.1±3.2 18.8±3.6 22.5±4.2 93.6±2.9 100.0±0.0 5 10 7.5
FairAdj𝑇 2=5 [30] 75.9±1.6 83.0±2.2 40.7±4.1 20.9±4.3 18.4±2.8 31.9±7.1 83.8±4.9 98.3±7.2 9 4 6.5
FairAdj𝑇 2=20 [30] 71.8±1.6 79.0±1.9 32.3±2.8 15.8±4.3 23.0±4.2 41.4±5.9 78.3±6.8 98.3±7.2 10 3 6.5
GCN+FairDrop [39] 82.4±0.9 90.1±0.7 52.9±2.5 31.0±4.9 11.8±3.2 14.9±3.7 89.4±3.4 100.0±0.0 3 5 4
GAT+FairDrop [39] 79.2±1.2 87.8±1.0 48.9±2.8 31.9±4.3 15.3±3.2 18.1±3.5 94.5±2.0 100.0±0.0 8 7 7.5
G-Fame 82.6±0.7 90.2±1.2 48.8±2.0 19.5±0.5 10.8±0.7 13.0±0.8 83.3±2.3 100.0±0.0 2 2 2
G-Fame++ 84.1±2.0 93.8±0.8 44.1±3.6 15.8±3.7 12.9±2.8 7.5±2.3 76.7±2.5 100.0±0.0 1 1 1

Link prediction on 𝐶𝑖𝑡𝑒𝑆𝑒𝑒𝑟
GCN [27] 76.7±1.3 86.7±1.3 42.6±3.7 27.9±4.7 20.6±4.1 22.2±4.6 68.1±3.7 71.4±9.1 7 6 6.5
GAT [43] 76.3±1.4 85.6±1.9 42.4±2.8 26.4±4.1 21.1±3.8 25.4±5.6 71.3±5.7 73.4±9.9 8 8 8
GCN+EdgeDrop [37] 78.9±1.3 88.0±1.3 44.9±2.5 27.5±4.1 20.1±2.9 21.6±5.0 71.0±3.4 73.2±9.5 4 7 5.5
GAT+EdgeDrop [37] 76.3±0.9 85.6±1.0 42.6±2.5 28.4±5.0 22.2±5.1 27.6±6.3 76.7±3.0 77.5±8.8 8 10 9
FairAdj𝑇 2=5 [30] 78.5±2.2 86.7±2.2 39.2±3.2 19.0±3.9 17.3±4.4 18.2±5.8 62.6±4.1 47.6±8.8 6 4 5
FairAdj𝑇 2=20 [30] 74.4±2.5 82.5±2.7 31.0±3.1 15.6±3.0 8.8±3.2 19.7±6.9 56.1±3.8 43.1±7.4 10 2 6
GCN+FairDrop [39] 79.2±1.4 88.4±1.4 42.6±2.5 26.5±4.2 18.7±4.0 17.6±5.5 67.7±3.5 64.3±9.5 3 5 3
GAT+FairDrop [39] 78.2±1.1 87.1±1.1 42.9±2.2 28.3±4.3 22.5±3.4 25.9±5.2 75.3±3.2 73.4±9.1 5 9 7
G-Fame 79.8±2.3 89.4±1.7 38.6±3.1 13.5±2.4 11.6±2.2 9.4±2.7 59.1±0.7 47.8±8.6 2 3 2.5
G-Fame++ 81.5±0.6 91.9±0.1 38.6±0.5 13.0±1.7 13.6±0.2 8.5±1.1 55.1±3.4 42.0±1.1 1 1 1

Link prediction on 𝑃𝑢𝑏𝑀𝑒𝑑

GCN [27] 88.0±0.4 94.5±0.2 43.9±1.2 13.2±1.4 5.0±1.7 4.9±1.7 57.3±2.0 26.2±3.6 5 4 4.5
GAT [43] 80.8±0.4 89.4±0.3 42.3±1.7 23.2±1.9 2.3±1.2 5.3±1.2 59.0±1.7 49.7±3.4 6 9 7.5
GCN+EdgeDrop [37] 88.0±0.5 94.6±0.3 43.7±1.0 12.8±0.8 6.3±0.7 6.0±1.1 57.5±1.4 26.3±2.3 4 5 4.5
GAT+EdgeDrop [37] 80.6±0.9 88.8±0.7 43.5±1.1 24.5±1.9 4.8±1.6 7.5±1.5 60.1±1.9 49.3±3.6 7 10 8.5
FairAdj𝑇 2=5 [30] 75.5±2.5 84.1±2.2 32.3±4.7 15.9±4.7 7.3±3.0 13.8±6.2 53.4±9.9 43.2±9.5 9 7 8
FairAdj𝑇 2=20 [30] 73.8±2.4 82.1±2.0 28.9±4.2 14.0±4.0 7.8±4.0 16.5±6.7 52.5±9.7 43.5±9.8 10 6 8
GCN+FairDrop [39] 88.4±0.4 94.8±0.2 42.5±0.5 12.2±0.7 5.6±1.8 5.1±0.9 55.7±1.5 26.6±2.6 3 3 3
GAT+FairDrop [39] 79.0±0.8 87.6±0.7 37.4±0.9 19.7±1.1 2.0±1.0 6.4±1.4 56.8±2.1 47.3±4.1 8 8 8
G-Fame 89.4±0.7 95.9±0.2 40.7±0.3 11.7±0.6 4.8±0.9 4.2±1.2 53.0±1.2 26.1±1.0 1 2 1.5

G-Fame++ 89.2±0.4 95.6±0.07 35.9±0.03 11.0±0.6 2.3±0.2 1.5±0.04 51.0±0.6 25.8±0.2 2 1 1.5

Does G-Fame++ benefit from the proposed three regulariza-

tions? Since G-Fame++ contains different regularization strategies,
we analyze their effectiveness by removing each of them individu-
ally and then comparing the results. From Table 2, first, we discover
that the removal of node diversity regularization negatively impacts
not only the AUC/accuracy but also the fairness of the G-Fame++
model, causing a 0.9% loss of accuracy and 2.4 loss of AUC. In
addition, from the fairness perspective, this removal drops the av-
erage ranking of the model from 1 to 4 when applied to a variety
of datasets. This indicates the effectiveness of our node diversity
regularization strategy. Second, removing the layer diversity regu-
larization results in a high similarity between different layer outputs.

As a consequence, it degrades the ranking of the model from 1, 1, 1.5
to ranking 3, 2, and 3.5 on the datasets𝐶𝑜𝑟𝑎,𝐶𝑖𝑡𝑒𝑆𝑒𝑒𝑟 , and 𝑃𝑢𝑏𝑀𝑒𝑑 ,
respectively. This demonstrates the effectiveness of layer diversity
regularization in facilitating distinct layers to produce diversified
outputs. Third, the removal of expert diversity regularization re-
sults in expert weight parameter redundancy, which inhibits the
experts from capturing different aspects of knowledge as well as
generating fair predictions. As a result, the G-Fame model’s fair-
ness drops from ranking 1, 1, 1.5 to 3.5, 3.5, 4 on the datasets 𝐶𝑜𝑟𝑎,
𝐶𝑖𝑡𝑒𝑆𝑒𝑒𝑟 , and 𝑃𝑢𝑏𝑀𝑒𝑑 , respectively. This shows the efficacy of ex-
pert diversity regularization in enabling the model for learning fair
representations. In general, the above comparisons about all three
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Table 2: Ablation study results on Graph Fairness Learning Benchmark (i.e 𝐶𝑜𝑟𝑎, 𝐶𝑖𝑡𝑒𝑆𝑒𝑒𝑟 , and 𝑃𝑢𝑏𝑀𝑒𝑑). For each dataset, we

iteratively remove the three novel components contained in G-Fame and G-Fame++. Bolden represents the best performance

and underline indicates the runner-up. 𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 and 𝑃 . denote the performance of accuracy and AUC. 𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 and 𝐹 . denote

the fairness metric of Δ𝐷𝑃𝑚 , Δ𝐸𝑂𝑚 , Δ𝐷𝑃𝑔 , Δ𝐸𝑂𝑔 , Δ𝐷𝑃𝑠 , and Δ𝐸𝑂𝑠 .𝐴𝑣𝑔. of 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 denotes the average of the overall performance

ranking and overall fairness ranking.

Method 𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 𝑅𝑎𝑛𝑘𝑖𝑛𝑔

Acc. ↑ AUC ↑ Δ𝐷𝑃𝑚 ↓ Δ𝐸𝑂𝑚 ↓ Δ𝐷𝑃𝑔 ↓ Δ𝐸𝑂𝑔 ↓ Δ𝐷𝑃𝑠 ↓ Δ𝐸𝑂𝑠 ↓ 𝑃 . 𝐹 . 𝐴𝑣𝑔.

Link prediction on 𝐶𝑜𝑟𝑎
G-Fame++ 84.1±2.0 93.8±0.8 44.1±3.6 15.8±3.7 12.9±2.8 7.5±2.3 76.7±2.5 100.0±0.0 1 1 1

-w/o node diversity 83.2±1.2 91.4±0.7 52.0±2.5 20.0±5.3 12.2±2.1 12.4±0.6 86.4±0.6 100.0±0.0 3 4 3.5
-w/o layer diversity 83.2±1.0 91.3±0.8 43.0±1.5 16.0±3.9 10.4±2.5 7.5±1.0 80.3±0.8 100.0±0.0 4 2 3
-w/o expert diversity 83.5±0.4 93.4±0.4 50.0±1.0 19.3±2.9 13.4±1.0 14.1±1.5 87.7±1.7 100.0±0.0 2 5 3.5
G-Fame 82.6±0.7 90.2±1.2 48.8±2.0 19.5±0.5 10.8±0.7 13.0±0.8 83.3±2.3 100.0 ±0.0 5 3 4
-w/o G-Fame layer 81.0±1.1 88.0±1.0 53.5±2.4 34.8±5.0 13.6±3.2 17.7±4.1 88.3±3.3 100.0±0.0 6 6 6

Link prediction on 𝐶𝑖𝑡𝑒𝑆𝑒𝑒𝑟
G-Fame++ 81.5±0.6 91.9±0.1 38.6±0.5 13.0±1.7 13.6±0.2 8.5±1.1 55.1±3.4 42.0±1.1 1 1 1

-w/o node diversity 80.2±0.2 90.3±0.3 40.2±1.0 13.9±0.6 15.8±1.8 10.5±1.5 62.8±2.0 45.2±15.8 3 4 3.5
-w/o layer diversity 80.0±0.4 89.6±0.4 37.9±0.7 14.2±0.8 13.7±1.1 8.7±0.6 55.6±2.7 45.4±4.4 4 2 2
-w/o expert diversity 81.0±0.7 91.1±0.3 39.9±0.2 18.5±2.7 14.3±1.4 11.0±0.6 62.1±2.1 49.0±0.0 2 5 3.5
G-Fame 79.8±2.3 89.4±1.7 38.6±3.1 13.5±2.4 11.6±2.2 9.4±2.7 59.1±0.7 47.8±8.6 5 3 4
-w/o G-Fame layer 76.7±1.3 86.7±1.3 42.6±3.7 27.9±4.7 20.6±4.1 22.2±4.6 68.1±3.7 71.4±9.1 6 6 6

Link prediction on 𝑃𝑢𝑏𝑀𝑒𝑑

G-Fame++ 89.2±0.4 95.6±0.07 35.9±0.03 11.0±0.6 2.3±0.2 1.5±0.04 51.0±0.6 25.8±0.2 2 1 1.5

-w/o node diversity 87.4±0.1 94.2±0.1 50.1±0.4 16.1±0.4 8.6±0.1 7.5±0.3 63.0±0.3 37.2±2.5 5 4 4.5
-w/o layer diversity 87.5±0.4 94.1±0.1 41.3±0.6 12.4±0.3 4.6±0.3 4.8±0.3 55.1±1.2 28.3±0.4 5 2 3.5
-w/o expert diversity 88.8±0.03 95.3±0.1 45.5±0.2 15.7±0.9 6.3±0.9 6.4±0.4 60.2±1.4 36.6±3.5 3 5 4
G-Fame 89.4±0.7 95.9±0.2 40.7±0.3 11.7±0.6 4.8±0.9 4.2±1.2 53.0±1.2 26.1±1.0 1 3 1.5

-w/o G-Fame layer 88.0±0.4 94.5±0.2 43.9±1.2 13.2±1.4 5.0±1.7 4.9±1.7 57.3±2.0 26.2±3.6 4 6 5

regularizations for different perspectives show that G-Fame++ im-
proves the accuracy and fairness metrics of GNNs against limited
learnable information by generating diverse yet useful representa-
tions. This is also compatible with the subsequent additional studies
in Section 5.4-5.6.

5.4 Expressivity Analysis w.r.t. Fairness

We compare the expressivity of G-Fame++ and vanilla GCN by
showing the distributions of node representations under fairness
setting in Figure 3. Specifically, we visualize the distributions of
node representations from the input, the first Batch Normalization
(BN) layer, and the last BN layer. The subfigure 3a shows the dis-
tributions of the same input data for both GCN and G-Fame++,
with uniform distributions to ensure fair comparison. According to
subfigure 3b and subfigure 3c, we observe that GCN and G-Fame++
learn divergent node representation distributions during training.
Specifically, in the first BN layer, GCN learns grouped node rep-
resentation distribution, while the distribution is more scattered
and spread out for G-Fame++. As the layer grows deeper, GCN
generates a more diversified representation distribution in the last
BN layer, but still performs much worse compared to G-Fame++.
Generally, G-Fame++ can well capture the limited knowledge and
obtain distinguishable representation distributions across layers.

This phenomenon is further validated by comparing GCN with
G-Fame, as shown in Figure 6 in Appendix A.1.

5.5 Representation Diversity Analysis

For a better understanding and comparison, we visualize the learned
node representations of GCN under standard setting, GCN under
fairness setting, G-Fame, and G-Fame++ via t-SNE [42]. As can be
seen in Figure 4, GCN under standard setting can roughly clus-
ter nodes from different categories while the boundaries between
categories are vague. Compared to the standard setting, GCN un-
der the fair setting shows a poor performance on node clustering
(i.e., nodes are mixed and unorganized). This demonstrates that
GCN cannot fully capture the knowledge from the fairness-aware
augmented graph and obtain distinguishable node representations.
However, both of our models G-Fame and G-Fame++ are able to
distinguish and separate nodes of different categories as well as
maintain a clear boundary between each category. Furthermore,
nodes within the same category can form a condensed cluster in-
stead of splitting into different small groups. This again shows the
effectiveness of G-Fame and G-Fame++ on learning distinguishable
node representations under the fairness setting. This observation
across different layers is further discussed in Appendix A.2.
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(a) Input (b) First BN layer (c) Last BN layer
Figure 3: The distributions of node representations in both GCN and our G-Fame++: input layer (figure (a)), after first layer
(figure (b)), and after the last layer (figure (c)). Both models have the same input. Red color indicates the GCN under fairness
setting, while green color indicates the GCN with G-Fame++ setting. The 𝑥 and 𝑦 axes represent the running mean and running

variance of a channel, respectively.
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(d) G-Fame++

Figure 4: The t-SNE visualization of node embeddings in the final GNN layer on 𝐶𝑜𝑟𝑎 dataset. Different colors denote different

node class labels.
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(d) G-Fame++

Figure 5: Loss landscapes of GCN under standard setting (a), fairness setting (b) and G-Fame (c), G-Fame++ (d). Under both

settings, we visualize the same set of nodes randomly sampled from the test set of 𝑐𝑜𝑟𝑎 dataset.

5.6 Optimization Landscape Visualization

To further show the effectiveness of our models, we visualize the
3D loss landscapes [29] of G-Fame, G-Fame++, and GCN under
two settings (i.e., standard and fairness). According to Figure 5, we
observe that the loss landscape for GCN under the standard setting
is more smooth than it under the fairness setting, which shows the
difficulty of optimizing the model under the fairness setting. On
the other hand, the loss landscape for G-Fame is steeper than GCN
under both settings. We ascribe the reason to the large volume of
parameters contained in each expert, which significantly increases
the difficulty of optimizing the model. However, G-Fame++ can
learn a much more smooth landscape compared to G-Fame, thanks
to the proposed three regularization strategies. This reveals that
our regularizations can alleviate the optimization difficulty induced

by fairness-aware augmented graphs, which further demonstrates
the efficacy of our overall framework.

6 CONCLUSION

In this paper, we identify the problem of limited learnable informa-
tion problem in graph fairness learning. To address this problem,
we present G-Fame, a novel plug-and-play method for assisting any
GNNs to learn distinguishable representations. Specifically, G-Fame
introduces an MoE mechanism that utilizes multiple expert neural
networks to capture different aspects of knowledge in the fairness
setting. In addition, we propose G-Fame++ with three innovative
regularization strategies to further increase the diversity from per-
spectives of node representations, layers, and experts. Extensive
experiments and in-depth studies demonstrate the superiority of
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G-Fame and G-Fame++ across a variety of accuracy and fairness
metrics on multiple benchmark datasets.
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Appendix A ADDITIONAL EXPERIMENTS

A.1 Expressivity of G-Fame w.r.t Fairness

The statistics of the batch normalization layer for G-Fame are shown
in Figure 6. Here we compare the representations of G-Fame and
vanilla GCN under the fairness setting as a complementary for
experiments. Specifically, we visualize the distributions of node
representations from the input, the first Batch Normalization (BN)
layer, and the last BN layer. Subfigure 6a demonstrates the dis-
tributions of the uniform input data for both GCN and G-Fame,
with same distributions to guarantee the fair comparison. Figure 6
shows a divergent distribution between G-Fame, and GCN under
fairness setting. According to Subfigure 6b and Subfigure 6c, we
find out that GCN and G-Fame learn disparate node representation
distributions during training. In particular, in the first BN layer,
GCN learns mixed node representation distribution, while the BN
distribution is more scattered and spread out for G-Fame. As the
layer depth increases, GCN produces a more diversified representa-
tion distribution in the last BN layer, but still performs not as good
as G-Fame. Generally, G-Fame can still maintain an outstanding
ability to produce distinguishable representations across layers.

A.2 Representation Diversity across Layers

We visualize the performance of G-Fame, G-Fame++, and vanilla
GCN under the fairness setting via the t-SNE visualization [42],
which is demonstrated in Figure 7. In particular, we show the visual-
izations of two layers for each model, where layer 1 is the beginning
input layer and layer 2 indicates the next proceeding layer after
layer 1. According to Figure 7, vanilla GCN under fairness setting
illustrates a poor performance on node classification tasks due to
its mixed and clustered nodes. In addition, GCN under the fairness
setting is having a hard time congregating nodes from different cat-
egories while the boundary between each category is pretty vague.
This phenomenon is alleviated as the layer depth increases but
still not satisfying enough. On the other hand, both of our models
G-Fame and G-Fame++ are able to distinguish and separate nodes
of different categories while maintaining a clear boundary between
each category as layer depth increases, which can also be validated
in previous experiment 4. Furthermore, nodes under the same cate-
gory can form a condensed group instead of splitting into different
small clusters. This again shows the effectiveness of G-Fame and
G-Fame++ on learning distinguishable node representations under
the fairness setting.

Appendix B EVALUATION METRICS

In section 5.1, we briefly demonstrate the general fairness metrics
we used in this paper to evaluate and compare the performance of G-
Fame and G-Fame++ with other baselines. Let us denote 𝑌 ∈ [0, 1]
as a binary target variable and 𝑌 = 𝑓 (𝑥) as a predictor. Next, we
pair each 𝑥 with a categorical sensitive attribute 𝐴. Two often used
metrics under a such case are Demographic Parity (DP) [21] and
Equalized Odds (EO) [20].
Demographic Parity (DP): 𝑌 satisfies DP if the positive outcome
is independent of the value of the sensitive attribute 𝐴, such that:

𝑃 (𝑌 |𝐴 = 0) = 𝑃 (𝑌 |𝐴 = 1). (16)

If this is shown on a confusion matrix, it requires the positive rate
of every part of the protected group to be the same.
Equalized Odds (EO): 𝑌 satisfies EO if the true positive rates and
false positive rates between two groups match with each other with
different values of sensitive attribute 𝐴:

𝑃 (𝑌 = 1|𝐴 = 0, 𝑌 = 𝑦) = 𝑃 (𝑌 = 1|𝐴 = 1, 𝑌 = 𝑦). (17)
For the link prediction task, we focus more on the dyadic fair-
ness metric such that it requires model predictions to be statis-
tically independent of sensitive attributes corresponding to the
edges. In [34, 39], the authors proposed three dyadic criteria: mixed
dyadic-level protection, group dyadic-level protection, and sub-
group dyadic-level protection. Specifically, the fairness in mixed
dyadic is determined based on the homophily of the nodes inter-
connected by each link; the fairness in subgroup dyadic ensures
that no subgroups gain unfair advantages in the formation of links.
Group dyadic ensures that every node is involved in link creation
regardless of the value of their sensitive attributes. Here, we provide
more detailed explanations for these metrics:

• Mixed dyadic [34]: the fairness is evaluated based on the
homogeneity of nodes involved in each edge. In particular,
the edge is considered to be an intra-group link if it inter-
connects a pair of nodes with the same sensitive attribute.
Otherwise, it is regarded as an inter-group link. This evalua-
tion metric usually appears in the recommender system to
prevent segregation of the users.

• Sub-group dyadic [34]: the fairness is evaluated based on
how representative a subgroup is in the creation of the links
(i.e., intra-group and inter-group). In other words, the sub-
group dyadic fairness metric aims to protect the balance
between all possible intra-group links and inter-group links.
It makes sure that no certain subgroup is favored over other
subgroups.

• Group dyadic [39]: there is an injective mapping between
the node-level and dyadic groups. The group dyadic metric
ensures that each node gets involved in the links’ creation
process whether the value of their sensitive attributes.

Appendix C IMPLEMENTATION DETAILS

C.1 Baseline Descriptions

To evaluate the performance of our pipelines on the link prediction
task, we compare our models with multiple general GNNs and
fairness algorithms to further display their effectiveness:

• GCN [27]: a neural network model that implements with
layer-wise propagation rule based on a first-order approxi-
mation of spectral graph convolutions. (code).

• GAT [43]: a convolution-style neural network that leverages
masked self-attentional layers to assign importance to dif-
ferent nodes within a neighborhood without depending on
the entire graph structure (code).

• FairAdj [30]: learns a fair adjacency matrix during the link
prediction task. The algorithm implements a graph varia-
tional autoencoder [26] and two distinct optimization meth-
ods to reach a more favorable fairness-utility tradeoff. In
particular, one optimization process is for obtaining a fair
version of the adjacency matrix while the other one is for an
end-to-end link prediction task (code.

https://github.com/tkipf/gcn
https://github.com/PetarV-/GAT
https://github.com/brandeis-machine-learning/FairAdj
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Figure 6: The statistics of the channel-based batch normalization (BN) layer: before transformed by the very first GCN as shown

in Figure (a), after the first layer as in Figure (b) shown, and after the last layer as Figure (c) shown. Red color indicates the GCN

under fairness setting, while green color indicates the GCN with G-Fame setting. The 𝑥 and 𝑦 axes represent the running mean

and running variance of a channel, respectively.

Table 3: Hyper-parameters of G-Fame and G-Fame++ for

cora, citeseer and pubmed datasets. The 𝑛 and 𝑘 indicate the

number of total experts and activated experts in each layer,

respectively. The noisy rate controls the randomness when

some expert is activated by the gate module. 𝛿 regulates the

level of fairness in our model during the training process.

Model G-Fame G-Fame++
Dataset Cora CiteSeer PubMed Cora CiteSeer PubMed
Iteration 500 500 200 500 500 200

Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Output Dimension 256 256 128 256 256 128
Hiddent Dimension 256 256 128 256 256 128

Optimizer Adam Adam Adam Adam Adam Adam
n 3 3 2 3 3 2
k 1 1 1 1 1 1

Dropout 0.5 0.5 0.5 0.5 0.5 0.5
Noisy Rate 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2

𝛿 0.46 0.50 0.46 0.46 0.46 0.46

Table 4: Statistics of three academic network datasets

Dataset #Nodes #Edges #Feat. #Classes #Avg. Degree Feat. Range
(original) Download links

Cora 2,708 10,556 1,433 7 3.88 [-2.30, 2.40] https://shorturl.at/bhoY4
Citeseer 3,327 9,104 3,703 6 2.84 [-4.55, 1.67] https://shorturl.at/bGTZ6
PubMed 19,717 88,648 500 3 4.50 [-4.55, 1.67] https://shorturl.at/cnEN8
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Figure 7: The t-SNE visualization of node embeddings in layer

1 and 2 on fairness-aware augmented 𝐶𝑜𝑟𝑎. Different colors

denotes different node category labels.

• DropEdge [37]: a data-augmented technique that allevi-
ates over-fitting problems and reduces the information loss
caused by over-smoothing during the training process. It
randomly removes a number of edges from the input graph
during each training epoch (code).

• FairDrop [39]: improve fairness in graph representation
learning via dropping biased edges. It can also be considered
a biased data augmentation technique that can be applied to
various datasets and models. The fairness of the algorithm is
evaluated based on two tasks: the end-to-end link prediction
task and the capability of removing the effect of sensitive
attributes from node representations (code).

C.2 Hyperparameters

The hyper-parameters of G-Fame and G-Fame++ are listed in Table
3. Due to the limitation of GPU memory, the output and hidden
dimensions for both models on the PubMed dataset are restricted to
128. Similarly, the gating module assigns no more than two experts
(𝑛 ≤ 2) in each layer.

C.3 Dataset Details

We evaluate our proposed G-Fame++ and G-Fame++ under graph
fairness learning settings on three real-world citation networks.
The data statistics are displayed in Table 4.

C.4 Efficiency Analysis

The efficiency of G-FAME++ is comparable to regular GNN. The
complexity of G-FAME++ relies on the activated part, which is
a relatively small number, thus the computation complexity of
G-FAME++ will not grow rapidly like regular GNN as the hidden di-
mension increases. For example, on Cora, the training time of GCN
(dim=32 | dim=256) is (5.2 | 8.5) minutes; meanwhile, G-FAME++
(dim=32 and expertnum=4 | dim=32 and expertnum=8) costs (5.5 |
6) minutes.

C.5 Parameter Comparison

The parameters amount for G-FAME++ (expertnum=4) and existing
GCN baseline is 12.0M and 2.2M, respectively. However, during the
real training and inference phase, G-FAME++ activates the same
number of parameters as the GCN baseline.

https://shorturl.at/bhoY4
https://shorturl.at/bGTZ6
https://shorturl.at/cnEN8
https://github.com/DropEdge/DropEdge
https://github.com/ispamm/FairDrop
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