Can <u>language</u> representations emerge from a purely <u>image</u>-pretrained model?

-- An initial exploration in multimodal learning:

Look Twice as Much as You Say: Scene Graph Contrastive Learning for Self-Supervised Image Caption Generation, CIKM'22, Chunhui Zhang, et al.

- ☐ Introduction vision language learning
- Method
- ☐ Experiment
- Discussion

About me:

Hello, my name is Chunhui Zhang, and I am currently a Ph.D. student in Computer Science at Dartmouth College. My research interests and experience span a range of areas, including learning representations from diverse modalities, trustworthy machine learning, and efficient machine learning. My prior works have been accepted to top-tier conferences, such as ICLR'23, NeurIPS'22, WWW'23, CIKM'22, etc.

Introduction - Vision Language Learning (modality gap between vision and language is large)

1. Image2Text (e.g., M^2 Transformer)

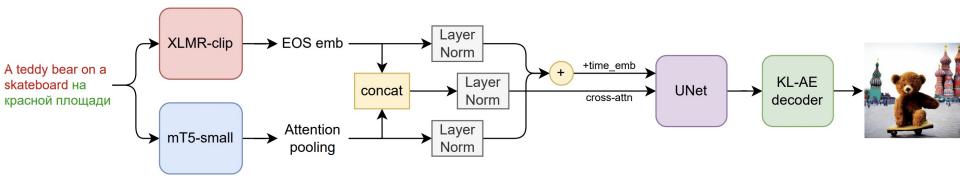
in a mirror.

GT: A cat looking at his reflection in the mirror. Transformer: A cat sitting in a window sill looking out. \mathcal{M}^2 Transformer: A cat looking at its reflection

GT: A plate of food including eggs and toast on a table next to a stone railing.

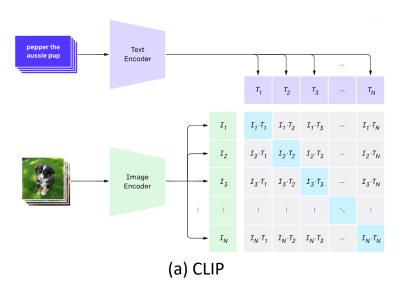
Transformer: A group of food on a plate. \mathcal{M}^2 **Transformer:** A plate of breakfast food with eggs and toast.

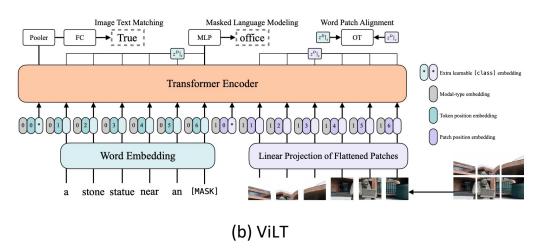
☐ 2. Text2Image (e.g., Diffusion Model)



Introduction - Vision Language Learning (modality gap between vision and language is large)

3. Models for both modalities (e.g., CLIP, VILT)





Introduction - Vision Language Learning (modality gap between vision and language is large)

Summary:

- ☐ Method 1 requires *ground-truth text* for supervised loss (e.g., CE loss)
- ☐ Method 2 requires *ground-truth image* for supervised loss (e.g., MSE loss)
- ☐ Method 3 requires *well-paired image-text input* for (un)supervised loss

All three of the above popular cross-modal learning paradigms have **limitations** on the training data, to mitigate the large modality **gap** between vision and language.

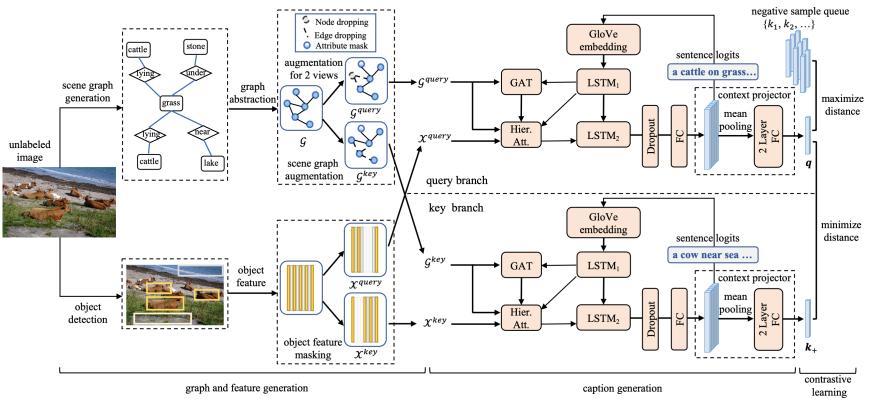
To tackle these limitations, we start with a question in image caption generation:

Can language representations emerge from a purely image-pretrained model?

- ☐ Introduction vision language learning
- ☐ Method Scene Graph Contrastive Learning
- ☐ Experiment
- ☐ Discussion

Method – Scene Graph Contrastive Learning

Contrastive training with purely visual Inputs, to learn (pseudo) caption sentence generation



- ☐ Introduction vision language learning
- ☐ Method Scene Graph Contrastive Learning
- ☐ Discussion

☐ Experiment - effectiveness of emerged language representations in image-pretrained model on captioning

Performance: finetuning with very few ground-truth captions

1% labels are used:

 M^2 -T: A sheen standing in a a a A girl tennic a a tennic tennic A alanhant of in a a a A correctanding standing a a a

<i>IVI</i> 1:	A sneep standing in a a a.	A man girl a a a a a.	A girl tennis a a tennis tennis	A elephant of in a a a.	A cow standing standing a a a.
SGAE:	A sheep of standing a a a.	A man is a a a a a.	A man girl a a a a a.	A man is a a a a a.	A sheep of in a a a a a.
VSUA:	A sheep of in a a a.	A man standing a a a a.	A girl girl a a a a a.	A people of a a a a a a.	A cow cow cow a a a a a.
C-GAT:	A group of a a a a.	A man is a a a a a.	A man girl a a a a a.	A street of a a a a.	A sheep of a a a.
SGCL:	A couple of sheep standing in the grass in a field.	A group of people playing a frisbee standing by the sea.	A woman is holding a tennis racket on a tennis ball.	A group of people standing in a street with a building.	A herd of cows walking down a road in the grass.
30% lab	<u>els</u> are used:				
<i>M</i> ² -T:	A group of sheep standing in a fenced area.	Two men playing frisbee on a dirt field.	A woman is holding a tennis racket in her hand.	A man riding an elephant in front of a building.	A group of cows standing next to each other on a field.
SGAE:	A white sheep is standing in the grass.	A group of men playing a game of frisbee.	A man hitting a tennis ball on a tennis court.	A group of people standing next to an elephant.	A cow standing on top of a lush green field.
VSUA:	A couple of sheep standing next to each other.	A man holding a frisbee in his hand.	Two men playing frisbee on a dirt field.	An elephant standing in front of a building.	A group of cows are standing in the grass.
C-GAT:	A group of sheep grazing in a grassy field.	A man holding a frisbee in his hand.	A woman is playing tennis on the court.	A man riding on the back of an elephant.	A brown cow standing next to a brown cow.
SGCL:	A couple of sheep standing on a lush green field near a fence.	A man is jumping in the air to catch a frisbee on a sea beach.	A woman is trying to hitting a tennis ball on a tennis court.	An elephant walking down a street with people in the background.	A herd of black cows standing next to each other on a lush green field.

Comparisons with popular baselines in caption metrics

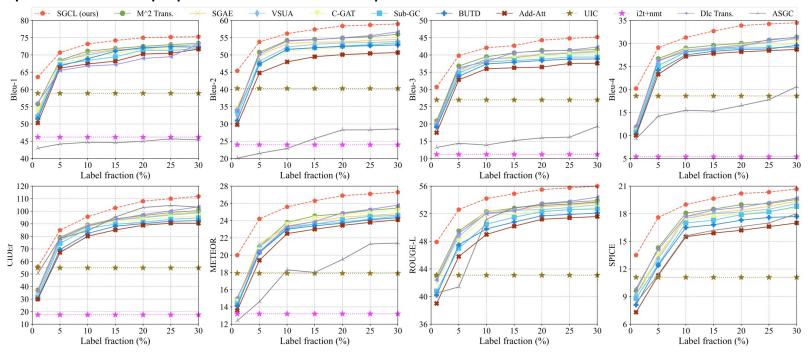


Figure 3: Performances of all models with limited labels (Note that ROUGE-L and SPICE of i2t+nmt are not shown due to missing values in the original work).

Ablation study: effectiveness of scene graph augmentation in contrastive learning

Table 1: Performances of different model variants with various graph augmentation strategies (Note: N - node dropping, E - edge dropping, A - node attribute masking, O - object feature masking).

Label	N	E	A	O	B-1	B-2	B-3	B-4	C.	M.	RL	S.
					61.8	43.8	28.9	18.2	47.7	18.5	46.3	11.9
				1	62.5	44.6	30.0	19.1	49.2	19.9	47.0	13.1
107	1			1	62.5	44.5	29.0	18.5	52.9	19.1	47.3	13.2
1%		1		1	63.1	44.3	28.8	18.6	52.2	19.3	47.2	13.0
			1	1	63.0	45.1	29.9	19.3	53.3	19.6	47.5	13.3
	1	✓	✓	✓	63.6	45.4	30.7	20.2	55.0	20.0	47.9	13.5
					69.4	51.7	36.6	26.2	75.9	22.2	49.4	16.3
				1	70.3	53.0	38.6	27.9	79.4	23.9	51.9	17.3
E 07	1			1	62.5	52.8	38.9	28.5	81.4	19.1	51.9	17.2
5%		1		1	63.1	53.5	38.7	28.6	82.2	19.3	52.0	17.1
			1	1	70.3	53.3	39.2	28.1	82.3	24.1	52.2	17.4
	1	1	1	1	70.7	53.8	39.8	29.1	84.9	24.2	52.6	17.6

☐ Ablation study: effectiveness of big dropout rate in contrastive learning

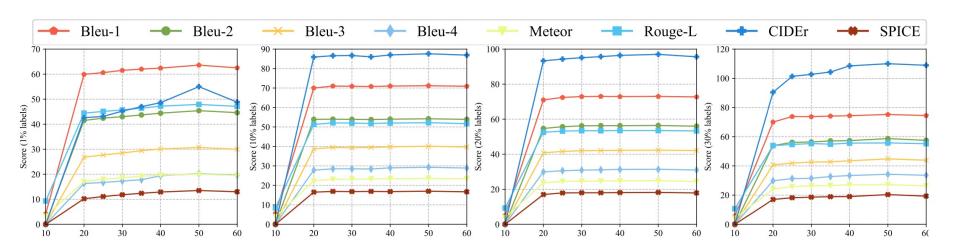


Figure 4: Impact of dropout rate at the output layer on model performance.

- ☐ Introduction vision language learning
- ☐ Method Scene Graph Contrastive Learning
- ☐ Experiment effectiveness of emerged language representations in image-pretrained model on captioning
- ☐ Discussion conclusion and hypothesis

Discussion

Conclusion

- Language representations *can* emerge from a purely image-pretrained model, even on small model in this work (i.e., LSTM_1 -> Attention -> GAT -> Attention -> LSTM_2).
- Although the image captioning model only uses **pseudo** sentence logits in the calculation of contrastive loss, the pre-trained model weights provide an effective initialization (i.e., 1% label finetuning brings impressive caption performance).

Hypothesis - for potential future exploration

- □ LSTM brings architecture prior related to NLP: it projects the image representation to the language dimension in a sequential manner like sentence.
- GAT introduces semantic representations: it extracts scene graph representation as one of the inputs to LSTM, which encodes object attributes and relations in images and enhance the semantic/language representations learned by LSTM.

Thank you!

Q & A