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Abstract—The development of social media (e.g., Twitter)
allows users to make speeches with low cost and broad in-
fluence. Thus, social media has become a perfect place for
users’ malicious behaviors like committing hate crimes, spreading
toxic information, abetting crimes, etc. Malicious behaviors are
covert and widespread, with potential relevance regarding topic,
person, place, and so on. Therefore, it is necessary to develop
novel techniques to detect and disrupt malicious behavior on
social media effectively. Previous research has shown promising
results in extracting semantic text (speech) representation using
natural language processing methods. Yet the latent relation
between speeches and the connection between users behind
speeches is rarely explored. In light of this, we propose a holistic
model named Graph adaption BERT (GraphBERT) to detect
malicious behaviors on Twitter with both semantic and relational
information. Specifically, we first present a novel and a large-
scale corpus of tweet data to benefit both graph-based and
language-based malicious behavior detection research. Then, we
design a novel model GraphBERT to learn comprehensive tweet
and user representation with the integration of both semantic
information encoded by transformers (i.e., BERT) and relational
information encoded by graph neural network. GraphBERT
further leverages a weight adaption BERT module implemented
between transformer layers to refine tweet embedding using
relational information for malicious tweet classification. Finally,
the adapted tweet embedding is used with the initial tweet
representation to generate user embedding for malicious user
detection. The extensive experiments on the collected Twitter data
show that our model outperforms the state-of-the-art baseline
methods for both tasks (i.e., malicious tweet classification and
malicious user detection).

Index Terms—Twitter, Graph neural network, BERT, Mali-
cious behavior detection

I. INTRODUCTION

Social media platforms (e.g., Twitter) provide people a
place to make free speeches with broad influences [1]. These
free and direct connections between people have significantly
benefited society but simultaneously become the cradle of ma-
licious behaviors. Among those platforms, online social media
(e.g., Twitter) have become a major vehicle for online mali-
cious behaviors, including committing hate crimes [2], making
aggressive speech, spreading rumors and misinformation [3],
online drug trafficking [4], etc. While we cherish the right of
free speech, a number of users get irritated or confused by the
spread of inflamed discussions and intentional inducement. As
a result, they begin to have malicious behaviors which is an
abuse of the freedom.

Under people’s concern, online malicious behaviors have
been rapidly recognized as a serious problem by the authorities

of many countries [5]. Take the most concerning hate crime
as an example, efforts have been made to reduce hate speech
by abolishing anonymity [5], [6], proposing initiatives [7],
studying hate groups and forums [8], and so on. Although
these methods have positive impacts on diminishing online
hate speech, most of them rely on human intervention. Hence,
there is a solid motivation to produce automatic detection
methods for online malicious behaviors.

Machine learning methods have been designed for automatic
detection based on social media data. Among those meth-
ods, Natural Language Processing (NLP) methods have been
widely used to detect and reduce online malicious behaviors,
especially hateful speech [9]. By obtaining features that can
represent the semantic information of a given sentence using
artificial neural networks, NLP methods provide convincing
results on hate speech detection [10] using machine learning
techniques to classify text as hate speech. Fine-tunes of the
widely used pre-trained language model from Transformers
[11] (e.g., Bidirectional Encoder Representations from Trans-
formers, which also is called BERT) has shown convincing
result on specific kind of hate speech detection [11], [12],
like racial bias [13]. Although promising progress has been
made on hate speech detection, there are two major points
that previous researchers have not considered.

The first point is that semantic information is not the
only feature in speeches. The speech generated by malicious
users often share related characteristics like the same users,
topics, named entities, and non-semantic information such as
mentions and hashtags. These latent relations provide links be-
tween different users and speeches, which can be learned with
graph structure. For example, using graph neural network mod-
els [14], tweet and user embedding with relational information
can be encoded. With the combination of semantic information
and user’s relational information, a more comprehensive model
can be designed for malicious behavior detection. Secondly,
while paying too much attention to hate speech detection, the
researchers have overlooked the harmfulness of those spiteful
users behind the malicious behaviors. Specifically, most of the
malicious users may have potentially shared the same idiosyn-
crasies like unstable emotions, being easily irritated, speaking
or acting on hearsay, etc. Since these users are the producers of
those malicious tweets, the problem will be largely alleviated
by banning those users. Therefore, developing a novel and
effective malicious behavior detection technique is essential
to solve the problem from the origin.



To validate the above analysis and solve the problem of
malicious behavior detection on social media, we first propose
a large dataset collected from 13,351 twitter users and 91,500
tweets. Later, we annotate each user and tweet respectively
based on their malicious scales. Users are labeled as normal
or malicious; tweets are labeled as normal, weakly malicious
or strongly malicious. Since graph neural networks (GNNs)
are proved to be effective in encoding relational information
[15], we construct graph structure based on tweets, users,
topics, mentions, hashtags, and other key information. Based
on the constructed graph, we propose a novel model called
GraphBERT, which fuses semantic and relational information
to learn both tweet and user representation for malicious
behavior detection. GraphBERT consists of three major parts:
node feature encoding, weight adaption network, and semantic
graph attention network. The node feature encoding module
generates user and tweet embedding by GNN for downstream
tasks. The weight adaption network utilizes user and tweet
embedding from GNN to refine the middle layer embedding
of words and sentences according to relational information.
Unlike the commonly used early-fusion or late-fusion methods
[16], weight adaption network modifies the internal word and
sentence embedding of BERT model by adapting semantic
internal features to the nonverbal user relational features and
finally generates tweet embedding for malicious tweet classifi-
cation. Based on the previous step’s embeddings, we propose
a deep fusion network to combine the initial pre-trained tweet
feature with the newly adapted feature to generate final user
embedding for malicious user detection.

To summarize, our major contributions of this paper are as
follows:

• We collect and annotate a large-scale Twitter dataset for
malicious behavior detection. Moreover, we further de-
sign GraphBERT, a novel model which combines BERT
with GNN to learn semantic and relational representation
for malicious behavior detection.

• We conduct extensive experiments to evaluate the per-
formance of our proposed model. The result exhibits the
superiority of our method in comparison to both Graph
and NLP baselines.

• To the best of our knowledge, this is the first attempt
at malicious behavior detection on social media using
graph-based relation information and transformer-based
semantic information.

II. RELATED WORK

A. Machine Learning on Tweets

Twitter is a micro-blogging platform where users can post
messages named “tweet” to their friends [17]. It has provided
an enormous amount of datasets in name entity recognition
[18], sentiment analysis [19], dialect classification [20], and
so on. Based on those tweet datasets in multiple research
areas, machine learning methods in sentiment analysis [21],
recommendation system [22], data annotation system [23]
and recently covid related studies [24] emerge and show

convincing results. Among those areas, hate speech detection
is becoming an increasingly popular research field in recent
years. To deal with different types of hate speech, the re-
searchers have presented different methods under disparate
backgrounds [1], [11], [25], [26]. Since the core purpose of
a hate speech detection task is to find the information owner
and stop him from contaminating the internet environment,
previous research may have underestimated the importance of
seeking malicious users on social media. In this paper, we aim
to solve the malicious user problem on Twitter.

B. Language Embedding Models

Learning word representations from large corpora has been
a core part of natural language processing (NLP). Language
models convert the natural language to features for different
downstream applications. Bag-of-words [27] is the first model
using a fixed length vector generated by clustering algorithms
to represent text. Glove [28] and Word2Vec [29] are trained by
machine learning methods and applied for many NLP research.
Contextual language representation models trained on large
corpora like GPT [30] and ELMo [31] present convincing
results on multiple NLP tasks. Base on contextual represen-
tation, BERT [32] captures bi-directional context information
using multi-transformer encoders with multi-head attention. It
is a widely used model pre-trained on a large cross-domain
unlabeled corpus. BERT and its improvement methods like
XLNet [33] or RoBERTa [34] show breakthrough results in
many NLP tasks. Since then, using pre-trained language mod-
els on a large amount of data and fine-tuning downstream tasks
has become a new paradigm for natural language processing.
Furthermore, this new paradigm has shown outstanding results
in many research fields. In this paper, we present a novel
weight adaption model applied between transformer layers of
BERT model to generate tweet embedding with the integration
of relational graph information.

C. Graph Neural Networks

With the advance of deep learning, graph neural networks
(GNNs) have attracted significant attention [35]–[39]. Unlike
the language models mentioned above, GNNs consider data
as a graph structure and can aggregate feature information
from node’s local neighbors via neural networks [14], [36].
For example, Graph Convolutional Network (GCN) [14] pro-
poses a graph-based convolution neural network to propagate
embeddings via interaction between nodes in the graph. GAT
[40] employs the self-attention method to measure the impacts
of different neighbors and combines their impacts to obtain
node embeddings. GraphSAGE [36] utilizes neural networks
like LSTM, to sample and aggregate neighbors’ feature infor-
mation. GEM [41] for malicious accounts detection has been
proposed to obtain better node embeddings for specific tasks.
Encouraged by data augmentation for semi-supervised learn-
ing in the computer vision research field, graph contrastive
learning [42]–[46] emerges to generate representations invari-
ant to specialized perturbations for diverse graph-structured
data. Our method uses graph attention network and graphs



contrastive learning respectively to generate representations of
users and tweets for fine-tuning of pre-trained BERT.

III. PRELIMINARY

In this section, we first introduce the definition of two kinds
of malicious behavior detections: malicious user detection
and malicious tweet classification. Later, we elaborate on the
collection and annotating methods of the dataset.

A. Problem Definition

Let G = {V,E,X} denote a graph data of Twitter data,
where V is the set of nodes, E ∈ V × V is the set of edges,
and X is the node feature set. The nodes include users, tweets,
and multiple types of other entities. An edge can be regarded
as any type of relationship between two nodes. Given the
features XU of all user nodes U = (u1, . . . , uN ), where N
is the total number of users. We use YU = (yu1 , . . . , yuN

) to
represent labels for all users, where yi = 1 denotes malicious
user and yi = 0 refers to normal user. Each user Ui is linked
to a set of tweets Tui

. Semantic information is captured by
NLP methods based on text set T = (t1, . . . , tM ) and their
labels YT = (yt1 , . . . , ytM ), where M is the total number of
text (e.g., tweet) data. that can combine semantic information
using NLP methods and tweet labels with a graph learning
model to achieve better detection performance. Formally, the
two problems are defined as follows.

Definition 1: Malicious user detection. Given a set of
Twitter users data U = (u1, . . . , uN ). Each user ui has a
corresponding label yi = 0 or 1 (0 for normal and 1 for
malicious). The task is to develop a machine learning model
fθ : U −→ YU to classify users into different categories, where
θ are model parameters.

Definition 2: Malicious tweet classification. Given a tweet
data set denoted as T = (t1, . . . , tM ). Each text ti has a
corresponding category label yi = 0or1 or 2 (0 for normal,
1 for weakly malicious, 2 for strongly malicious). We aim
to build a machine learning model fθ : T −→ YT to classify
tweets into different categories.

B. Data Collection

We collect more than twenty million tweets from over one
million Twitter users. To clean tweets that are useful for our
research, we select the data by following constraints:

• We do not consider retweeting in the tweets selection
process.

• The length of the natural language words is no less than
five and no more than twenty.

• The number of tweets each selected user posted is be-
tween five and twenty.

• Under the three constraints above, all data are randomly
selected without leaning toward certain groups or topics.

The natural language words in the second constraint refer to
words with semantic meanings. Other words or symbols like
punctuation marks, emojis, emoticons, and website addresses
are not considered in length. After noisy tweets elimination
and conditional filtering according to the length of symbols

tweet
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LDA Name Entity 
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Fig. 1. The illustration of graph generation on Twitter data. The extraction
model and example of node extraction from the tweet are shown on the left.
The graph structure contains different connections among nodes of users,
tweets, mentions, hashtags, topics, and name entities.

with linguistic meaning, we finally select 91,500 tweets from
13,351 users.

C. Data Annotation

We conduct data annotation for both users and tweets in the
dataset. For the user label, each annotator considers each user’s
tweets comprehensively and chooses a label from 0 (normal)
and 1 (malicious). Since the definition of malicious user is not
universally accepted, we consider malicious users as including
at least one of the following behaviors:

• Promote violence, directly attack, threaten or insult other
people based on race, ethnicity, national origin, sexual
orientation, gender, gender identity, religious affiliation,
age, disability, serious disease, or other common charac-
teristics.

• Spread toxic information like obscene, narcotics, terror-
ism, violence, or abetting crime.

• Use obscene or racial discrimination language for com-
plaining or expressing negative information, which should
be prohibited.

For malicious tweet annotation, every annotator decides its
malicious state as one of the following: 0 (normal), 1 (weakly
malicious) or 2 (strongly malicious). In detail, we define those
two special states as follows:

• Strongly malicious: Tweets that attack, threaten or insult
a person or group based on national origin, ethnicity,
color, religion, gender, gender identity, sexual orientation,
or disability. Tweets spread obscene, narcotics, terrorism,
violence, or abetting crime.

• Weakly malicious: The tweets that use obscene or racial
discrimination language for complaining or expressing
vicious information.

For each tweet, we have five independent, well-trained an-
notators to make annotations. The final label is decided by the
majority vote of the five labels. Furthermore, we provide the
target labels for all malicious tweets indicating the category of
its victim. Furthermore, we propose sentiment labels, including
activation and polarity labels for 15,000 tweets. We only use
malicious user and tweet annotation in the following model
and experiment sections.



TABLE I
STATISTICS OF DATASET.

Component Group Type Number

Node

Info
user 13,351
tweet 91,500
topic 80

Relation mention 403
hashtag 493

Entity

GPE 94
LOC 7
ORG 34

NORP 47
PERSON 57

Total - 106,066

Edge - - 215,588

D. Graph Construction

We introduce heterogeneous graph [38], [47]–[49] to rep-
resent the collected data. As shown in Figure 1, nodes in the
graph contain tweets, users, mentions, hashtags, topics, and
entities. We first extract mention (@) and hashtag (#) from raw
tweets. Next, we perform the sifting process and filter out the
less involved ones. Then we clean all raw tweets and catego-
rize them using LDA model with perplexity criterion [50]. The
LDA model clusters the latent semantic structure of all tweets
in the document. Therefore, the model provides all tweets with
the most likely topics and each topic consists of ten words
where each word has its corresponding weight. For name
entity generation, we use Name Entity Recognition (NER)
method [51] in NLP package ’SpaCy’ to get all entities in the
tweet. We select the five most meaningful entity types: location
(LOC), geopolitical entity (GPE), organization (ORG), person
(PER), and nationalities, religious or political groups (NORP).
The entities are only recorded as a node in the graph for each
entity type when it appears more than ten times. The details
of statistics are reported in Table I. Overall, the constructed
graph includes 106,066 nodes with 215,588 edges.

E. Challenges of Dataset

Here we listed some challenges of our collected dataset
for the research of malicious behavior detection: (1) Our
dataset consists of 90,212 negative and 1,288 positive tweets,
including 951 weakly harmful tweets and 337 strongly harmful
tweets. Besides, our dataset contains 12,293 normal and 1,058
malicious users, so we have to deal with extremely imbalanced
data in model training. (2) The tweets in our dataset are
randomly selected from Twitter without manually selecting.
Each tweet could contain an advertisement or repeated in-
formation that may befuddle the machine learning models.
(3) Since non-linguistic expressions like abbreviation, emojis,
emoticons, and so on are frequently used on Twitter, it is hard
for existing language models to encode this information. (4)
Previous research may only focus on a certain kind of hate
speech/behavior like racial discrimination or a specific topic

like Covid-19. In our dataset, we consider hate speech as a
whole and aim to detect malicious users whom the platform
should prohibit.

IV. THE PROPOSED MODEL

In this section, we describe our proposed GraphBERT
model, which contains three major components: node feature
encoding, weight adaption network, and semantic graph at-
tention network for malicious behavior detection. The node
feature encoding is shown in Fig. 2 (a) where we first use
pre-trained BERT to get the initial representation Xt for each
tweet node. The initial representations of other nodes are
generated based on the initial tweet representation which is
specifically introduced in Section. IV-A. After acquiring the
initial representation for all nodes, we use a graph attention
network to obtain user embedding Zu and leverage the graph
contrastive learning method to generate tweet embedding Zt.
Based on the user and tweet embeddings, we further introduce
a weight adaption network applied in the middle layers of
BERT (shown in Fig. 2 (b) and (c)) to refine the middle em-
beddings between BERT layers. The weight adaption network
contains word-level and sentence-level adaption, which can be
employed separately or simultaneously. The output embedding
Zadp of weight adaption BERT is used for malicious tweet
classification tasks. Finally, we employ a semantic graph
attention network (shown in Fig. 3) to generate the final user
representation for malicious user detection.

A. Node Feature Encoding

The constructed graph contains multiple nodes, including
tweets, users, mentions, hashtags, topics, and names. As shown
in 2(a), the initial feature of tweet nodes is acquired from the
pre-trained BERT model. For each tweet node, we use the
average feature of all word tokens which is a 768-dimensional
vector as the initial tweet representation. The feature Xui

for
user i with tweet set Tui

is initialized as:

Xui
=

1

k

∑
t∈Tui

BERT(t), (1)

where k is the number of tweet in set Tui
. For topic node,

we first use LDA model to generate topics. We minimize the
perplexity of LDA model to determine the best number of
topics. Since every single topic in LDA model contains words
and weight for each word, we generate the topic feature by
calculating the weighted average of word vectors in each topic.
As for mention, hashtag, and name entity nodes, their features
are represented by the average of their word features.

After getting the initial features for all nodes in the given
graph G = {V,E,X}, we apply graph attention network [40]
to generate the user’s embedding Zui as follows:

Zu = σ[Wu ·GAT(V,E,X)], (2)

where Wu is the trainable parameters, σ is the ReLU activa-
tion function. We further introduce graph contrastive learning
method with data augmentation to generate tweet embedding



Fig. 2. The illustrations of node feature encoding and weight adaption network based on the constructed graph of Twitter: (a) The node feature encoding
module for the user and tweet embedding generation; (b) weight adaption network applied between the transformer layers of BERT to refine the middle
embedding for generating better tweet embedding; (c) The backbone of BERT network with m layers of BERT encoder(Transformer).

for later models. The loss to learn node embedding Z of input
graph G can be formulated as follows:

LCL(G
′, G′′) = −

N∑
i=1

log
exp

(
sim

(
Zi, Z

+
i

))∑N
j=1,j ̸=i exp (sim (Zi, Zj))

, (3)

where we apply Zi and Z+
i to represent node i’s embeddings,

and they are calculated as Zi = GCNT(Aug1(G))i and
Z+
i = GCNP(Aug2(G))i. sim(·, ·) denotes cosine similarity.

exp(·) denotes exponential function which uses e as base. N
means the number of nodes in G. Aug1(·) and Aug2(·) are
the two random augmentations to generate two views G′ and
G′′ for an original input G, GCNT(·) is the target branch and
GCNP(·) is the predict branch for processing the input node.
Zi is similar to Z+

i since both embeddings are for node i
but dissimilar to all other embeddings Zj for node j ̸= i. The
LCL maximizes the agreement between Z+

i and Zi which both
transformed from one original node. The tweet embedding Zt

generated by the trained graph contrastive model is used for
subsequent models.

B. Weight Adaption Network

To effectively combine semantic and relational information,
we introduce a weight adaption network for refining tweet
embedding. Encouraged by the work of multi-model sentiment
analysis that nonverbal behaviors can have an impact on
the meaning of words [52]. We introduce a weight adaption
network with both word-level and sentence-level adaption to
modify the middle layer word embedding of BERT based
on the user and tweet embeddings generated in the previous
step. In the semantic space, the embedding of each word
represents a position point in this latent multi-dimension space.
Without the influence of other information, the word is simply

put into the space according to the word’s own linguistic
meaning (non-contextual). From the perspective of words,
the changing of word meaning in different contexts can be
considered as the influence between semantic information.
Yet non-semantic information can also impact the meaning
of words and, at the same time, change its position in the
semantic space. Our weight adaption network learns the impact
of user characteristics on the meaning of the user’s tweets and
further refines the tweet embeddings.

As shown in Fig. 2 (b) and Fig. 2 (c), the weight adaption
network is applied between different middle layers of BERT
model and it consists of two levels of adaption: word-level
adaptation and sentence-level adaption. The word-level adap-
tion and sentence-level adaption can work either independently
or to be used together after any BERT encoder layers. Firstly,
to achieve word embedding adaption, for tweet tj from user ui

with P word tokens, the weight adaption network receives both
middle tweet embedding Zn,j generated from tweet tj after n
BERT encoder layers and user embedding Zui generated by
the graph attention network in the previous subsection. The
word adaption vector Kword

adp is formulated as:

Kword
adp =

P

||
p=1

σ[W p,adp
n,u (Zp

n,j ||Zui
)], (4)

where || denotes the concatenation operation, Zp
n,j is the

embedding of the pth word’s in tweet embedding Zn,j , W p,adp
n,u

is the trainable parameters, σ is the ReLU activation function.
Based on the user embedding Zui

, we generate adaption
weight Kword

wgt as follows:

Kword
wgt =

P

||
p=1

σ(W p,wgt
n,u · Zui

), (5)



where W p,wgt
n,u is the trainable parameters. Finally, we refine

the word embedding Zn,j of tweet tj by the multiplication of
adaption vector and adaption weight vector to get the word-
adapted tweet embedding Zw

n,j :

Zw
n,j = Zn,j + α(Kword

adp ·Kword
wgt ), (6)

where the trade-off weight α is defined as follows:

α = min[
norm(Zn,j)

norm(Kword
adp ·Kword

wgt )
, α], (7)

where norm(·) represents the L2 norm. The features are finally
fed to the downstream layer after a dropout layer and a batch
normalization layer.

To further integrate information from tweet embedding
Zt encoded by GCN into word embedding, we introduce a
sentence-level weight adaption network (Fig. 2 (b)). For the
training on BERT, a [CLS] token is stipulated to be added at
the beginning of the sentence. Since [CLS] is a symbol without
obvious semantic information, compared with other words in
the text, this symbol can evenly integrate the information of
each word in the text [32]. For tweet tj , we combine word
feature Zn,j,[CLS] of its [CLS] token with Ztj to obtain the
adaption vector Ksent

adp :

Ksent
adp = σ[W adp

n,t · (Zn,j,[CLS]||Ztj )], (8)

where W adp
n,t is the trainable parameters. The weight Ksent

wgt

for sentence adaptation vector is generated as:

Ksent
wgt = σ(Wwgt

n,t · Ztj ). (9)

We finally formulate the sentence embedding by:

Zs
n,j =

P

||
p=1

[Zp
n,j + β(Ksent

adp ·Ksent
wgt )], (10)

β = min(
norm(Zn,j,[CLS])

norm(Ksent
adp ·Ksent

wgt )
, β), (11)

where β is a hyper-parameter. Since the two parts of the weight
adaption network are applied in the middle of the BERT, the
weight adaption BERT model can be formulated as:

Zadp = Layerm(Layer...(Layer1(Zn, Zu, Zt,Wm, Sm))),
(12)

where Layerm(·) refers to m-th BERT encoder layer, n refers
to the total layer number. Wm and Sm are boolean vectors
with length m denoting the position of adapting word-level
adaption and sentence-level adaption. In this work, the layer
number m of BERT is set to 12. Furthermore, if the word-
level adaption and sentence-level adaption are applied after
the same BERT encoder layer, the middle embedding Zn is
first sent to the word-level adaption network with output Zw

n

and then sent to sentence-level adaption network with output
Zw,s
n . Otherwise, the middle embedding Zn is sent to either the

adaptation network or the next layer if both adaption network
is not applied. The final output embedding Zadp is used for
malicious tweet prediction as follows:

ŷt = softmax[σ(Zadp ·W1) ·W2]. (13)

Fig. 3. The illustration of semantic graph attention network for joint
representation learning and user embedding generation for malicious user
detection.

We adopt cross-entropy loss overall labeled tweets as the final
objective function:

Lt = −
∑
t∈T

yt log ŷt, (14)

where T is the tweet set, ŷt is the prediction label of the
tweet and yt is the ground truth label of the tweet. The output
embedding Zadp is further sent to the later semantic graph
attention network module for malicious user detection.

C. Semantic Graph Attention Network

For malicious user detection, we propose a semantic graph
attention neural network based on the output tweet embedding
Zadp of the previous subsection (shown in Fig. 3). In this
module, the initial representation Xt and the BERT adaption
embedding Zadp are acquired by pre-trained BERT and weight
adaption BERT respectively. We combine the initial represen-
tation with the BERT adaption embedding to form the new
representation of the tweet node:

Xjoint =

{
σ[Wjoint · (Zadpj

||Xtj )] Vj ∈ T

Xj Vj /∈ T ,
(15)

where Xjoint is the new node representation, Wjoint is the
trainable parameters, || denotes concatenation, σ is the ReLU
activation function, T is the set of all tweet nodes and Vj ∈
V . Based on the joint embedding Xjoint, we train a graph
attention network with graph data G = {V,E,Xjoint} to get
the joint user embedding Zu,joint and feed it to a multi-layer
perceptron for malicious user detection. We adopt the focal
loss [53] over all labeled users as the objective function:

FLt = −
∑
u∈U

α · yγu log ŷu, (16)

where U is the user set, ŷu is the prediction of the user and
yu is the ground truth label of the user. α and γ are set as 0.1
and 3 respectively.

V. EXPERIMENTS

In this section, we conduct extensive experiments to verify
the superiority of our model compared with baseline methods
for two tasks: (i) For malicious user detection, we conduct
experiments on three different amounts of training data to
indicate the robustness of our model facing the different data



sizes. (ii) For malicious tweet classification, we implement
binary and triple classification with multiple baselines. Since
GraphBERT consists of several parts, to demonstrate the
effectiveness of each component, we also introduce ablation
studies. We further propose a few-shot experiment with a
small number of training tweets to validate the performance
of GraphBERT with few training data. Finally, we perform the
embedding visualization of GraphBERT compared to baseline
methods.

A. Baseline Methods

We compare our model with multiple baselines including (i)
graph neural network baselines for malicious user detection
and (ii) natural language processing baselines for malicious
tweet classification. We briefly review these baselines in the
following three types of models:
Common Baselines. (1) DNN: For the deep neural network
(DNN) baseline in our experiment, we apply a 3-layer fully
connected network with ReLU activation function. (2) LSTM:
For all Long Short-Term Memory (LSTM) [54] baseline in our
experiment, we apply a 2-layer bi-LSTM with ReLU activation
function and a linear classification layer.
Malicious User Detection Baselines. (1) GCN: Graph
Convolution Network (GCN) [14] is a convolution neural
network directly used on graph data to extract spatial features
of the topological graph. (2) GAT: Graph Attention network
(GAT) [40] improves GCN by extracting neighbors’ informa-
tion through masked self-attentional layers. Graph attention
networks assign different weights to each neighbor node to
measure the importance of each neighbor. (3) GCL: Graph
contrastive Learning (GCL) [43] learns the unsupervised repre-
sentation of a graph by maximizing the consistency of features
from different augmentations. (4) GraphSAGE: GraphSAGE
[36] is a graph neural network model which generates embed-
ding by sampling and fusion features of local neighbors.
Malicious Tweet Classification Baselines. (1) Word2Vec:
Word2Vec [55] is a neural network model used to generate
word embeddings. We use the Word2Vec embeddings as input
and a combination of LSTM with fully connected layers as
the classifier. (2) BERT: BERT [32] is bidirectional encoder
representations generation model composed of multiple trans-
former layer [56]. It has been proven to be beneficial for
many NLP tasks and has displayed promising results. (3)
Fine-tuning BERT: Fine-tuning BERT has been proven to
outperform other deep learning baselines like Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) [11] in other fields. We adopt two state-of-the-art fine-
tuning BERT in hate speech detection as baselines. (4) XLNet:
XLNet [33] is an improvement of BERT. As an autoregressive
language model, XLNet does not rely on data corruption and
eliminates the independence assumption made in BERT. (5)
Roberta: Roberta [34] is a robust BERT with a large number
of model parameters, batch size, and data. The model also
applies dynamic masking to improve performance.

B. Experimental Setup

Dataset Splits. For malicious user detection task, we set up
three different data splits (60% Training Data, 40% Training
Data, and only 20% Training Data). For each split, we ran-
domly select 60%, 40%, and 20% of all tweets as the training
set respectively. The rest of the data are split into the validation
set and testing set evenly. All experiments on a single split are
trained by the same set of training data and tested by the same
set of testing data. For malicious tweet classification task, the
tweet from training users in 60% training data split is set as
the training set, and the validation set and testing set are set
in the same way.
Reproducible Setting. For all baselines and our method, we
apply grid search to ensure hyperparameters. To make the
result more stable and reliable, each result we perform is
the mean result of five experiments with same parameters.
As for the layer of word adaption and sentence adaption, we
construct word adaption after the 1st BERT encoder layer and
sentence adaption after the 11th BERT encoder layer. We use
Adam as an optimizer with 5e-4 learning rate and 1e-4 weight
decay. For models of malicious tweet classification, we set the
batch size to 32 and the learning rate to 5e-6. As for the loss
function, we use focal loss [53] in graph attention network
training with the α set as 0.1, β set as 3 and reduction set as
mean. For all methods, we select the best model according to
the sum of balance accuracy and F1-score on the validation
set. An early stop of 5 for transformer-based models and 100
for graph-based models is set to avoid overfitting.

For the proposed node feature encoding, we adopt two
layers of GAT to extract user embedding and we apply a
contrastive learning model with a two-layer GCN. The hidden
size of the two GAT layers is 256 and 64 respectively with
a batch normalization layer and a 0.5 dropout applied in the
middle to avoid overfitting. For the contrastive learning GCN
model, the hidden dimension of two GCN layers is both 32,
and a 0.2 dropout is applied after each layer. For hyper-
parameter α and β in the weight adaption network, we set
both to 1.0.
Evaluation Metrics. For all experiments including three data
splits of malicious user detection and binary and triple mali-
cious tweet classification, we report balance accuracy, accu-
racy, and F1-score. Balance accuracy is the average of recall
obtained in each class. Higher values mean better performance
for all metrics.
Treatment of imbalanced data. Due to the imbalance be-
tween positive and negative data samples, we apply multiple
methods to improve the training process and make the exper-
imental results more reliable. First, we conduct experiments
on both binary classification and multi-label classification.
Since our dataset has three kinds of labels, not harmful,
weakly harmful, and strongly harmful, our binary classification
experiment merges the weakly harmful and strongly harmful
as positive samples. Even so, the imbalance of positive and
negative samples is still significant. To mitigate the influence
of imbalanced data, we adopt several strategies. First, focal



TABLE II
EXPERIMENT RESULTS FOR MALICIOUS USER DETECTION WITH DIFFERENT TRAINING RATIOS.

Model 60% Training Data 40% Training Data 20% Training Data

balance Acc. Accuracy F1-score balance Acc. Accuracy F1-score balance Acc. Accuracy F1-score

GCN 66.08 86.22 62.48 65.57 86.50 62.21 62.93 87.11 62.12
GAT 69.09 88.88 63.04 67.78 87.94 63.44 65.72 86.84 62.13

SAGE 63.75 88.49 63.62 63.51 88.11 62.31 63.03 85.69 62.68
GCN+DNN 65.81 87.59 63.69 65.05 87.39 62.79 64.38 85.58 62.71

GCN+GCL+DNN 62.71 78.96 57.63 62.58 76.81 54.83 62.97 73.52 54.55
GCN+GCL+SVM 59.40 88.00 56.44 59.72 87.68 56.86 58.63 87.88 55.96

GAT+DNN 68.07 86.48 62.12 67.92 86.24 62.56 66.92 86.69 63.00
SAGE+DNN 67.04 85.84 62.25 66.56 86.27 62.51 63.56 86.30 62.72

GraphBERT 74.68 90.09 67.66 70.92 89.89 65.62 68.20 88.47 63.58

TABLE III
EXPERIMENT RESULT ON MALICIOUS TWEET CLASSIFICATION. BACC.,

ACC., F1 DENOTE BALANCE ACCURACY, ACCURACY, F1-SCORE.

Model Binary Triple

bAcc. Acc. F1 bAcc. Acc. F1

LSTM 76.06 84.05 50.83 52.55 95.15 54.96
LSTM+DNN 79.92 83.77 50.78 58.15 80.85 54.96

BERT 89.08 96.56 73.57 65.54 96.51 55.43
BERT+CNN 89.06 95.50 73.63 67.29 89.69 48.34

BERT+LSTM 88.29 97.09 75.36 66.72 94.20 52.11
Roberta 90.31 96.01 66.95 65.65 96.69 55.24
XLNet 87.81 96.88 68.00 64.60 95.15 54.96

Ours 90.99 97.78 75.77 67.71 97.35 55.51

loss [53] is used for GNN training to balance. Besides, a
weight sampler is used for data selection in malicious tweet
classification experiments and training of the weight adaption
model. In addition, for evaluation metrics, balance accuracy is
used to reflect the model performance on imbalance training.

C. Performance Comparison

Malicious User Detection. As shown in Table II, we adopt
research on three GNN baselines including GCN, GAT, SAGE
for malicious user detection. In each baseline, we combine
graph neural networks with different kinds of classification
models (DNN and SVM) to get the result. We also conduct
multiple experiments on different amounts of training data
including 60%, 40%, and 20% to verify the robustness of
models when facing different training ratios. The best results
are highlighted in bold. For all cases, our model outperforms
all baselines in balance accuracy, classification accuracy, and
F1-score. For classification accuracy, our model shows a
+1∼15% improvement compared to other GNN-based base-
lines, which indicates the superiority of introducing BERT
into our model for better utilization of text representation.
For balance accuracy, our model shows a great improvement
of +5∼15% which indicate the effectiveness of our model
for extremely imbalanced data classification. For F1-score,
our model shows an improvement of +1∼10% increasing
compared to baselines, which indicates our model considers

balancing both precision and recall. Results show that our
method is significantly superior to other methods especially
reflected in balance accuracy. This result further shows that
the semantic and relational information is complementary and
can generate robust embedding which is especially effective
facing imbalanced data.
Malicious Tweet Classification. As shown in Table III, we
also conduct the experiment on the malicious tweet classifica-
tion task to verify the effectiveness of our model. We compare
our model with LSTM and Transformer-based baselines. Com-
pared with LSTM-based methods, our model shows significant
improvements in both binary and triple classification, which
demonstrate the benefits of the use of a more powerful Trans-
former based model. Compared to Transformer-based methods
including BERT, XLNet and Roberta, our model achieves a
+1∼3% improvement on balance accuracy, +1∼2% improve-
ment on classification accuracy and +1∼7% improvement on
F1-score on binary classification task and +2∼3% improve-
ment on balance accuracy, +2% improvement on classification
accuracy and slightly improvement on F1-score on triple
classification. These results show that related information from
GNN which learns useful structure information and improve
and perfects tweet embedding learning based on semantic
methods. Compared to Fine-tuned BERT baselines including
BERT+CNN and BERT+LSTM [11], our model achieves a
+1∼2% improvement in balance accuracy, classification
accuracy, and F1-score on binary classification task and a more
obvious improvement on triple classification, which also shows
the superiority of our weight adaption method.

D. Ablation Studies

The proposed GraphBERT integrates several crucial com-
ponents: (i) semantic graph attention network (SG) (ii) Word-
level weight adaption network (WF). (iii) Sentence-level
weight adaption network (SF). To verify the effectiveness of
each component, we conduct ablation studies by removing
each component independently. We conduct five different
experiments on malicious user detection including 1) GAT
with only graph attention neural network (remove SG, WF,
and SF). 2) SG with semantic graph attention network using
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Fig. 4. The result of ablation study.
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Fig. 5. The result of few-shot study.

semantic tweet embedding from the BERT model (remove
WF and SF). 3) SG+WF with semantic graph attention
network using semantic tweet embedding from BERT model
with word-level adaption network (remove SF). 4) SG+SF
with semantic graph attention network using semantic tweet
embedding from BERT model with sentence-level adaption
network (remove WF). 5) GraphBERT is the full model.
As shown in Fig. 4, we find each component has benefits to
improvements on both balance accuracy and F1-score. Among
them, GraphBERT achieves the best result. For precision,
all components show improvements except for SG+SF, but
SG+SF shows relatively significant improvement in balance
accuracy compared to GAT. Ablation results demonstrate that
all three components are effective to enhance our model for
solving the problem.

E. Few-Shot Performance

Since tweet annotation for semantic representation learning
is time-consuming for human annotators, we further conduct a
few-shot experiment using a few tweet labels. As it is shown
in Fig. 5, we conduct five different experiments using different
amounts of labeled tweet data to train our model and explore
the performance of few-shot GraphBERT. For all sampled
users, we use the labels of tweets they tweeted to train weight
adaption BERT. All parameters are set the same as in the
full-shot experiment. The few-shot result shows that using
tweets from less than 5% of total users (500/13,351) can still
achieve +3% improvement in balance accuracy. Furthermore,
the result of balance accuracy using labels from 15% of total
users (2,000/13,351) achieves a great improvement compared
to the baselines (0/13,351) and is only 1% lower than the full-
shot result (13,351/13,351). The result on accuracy and F1-
score also shows that our model can also achieve promising
improvement with a small number of tweet labels.
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malicious
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GCN+DNN
malicious
normal

SAGE
malicious
normal

GraphBERT
malicious
normal

Fig. 6. Visualization of users’ embeddings for malicious user detection.

F. Embedding Visualization

To better show the effectiveness of our model, we use t-
SNE [57] to visualize user embeddings of four methods: GAT,
GCN+DNN, SAGE, and GraphBERT, in Fig. 6. The red point
represents the malicious users and the green point represents
normal users. We can find that GraphBERT generates the most
distinct boundaries and the smallest overlapping rate between
malicious users and normal users, which further demonstrates
the superiority of our model for malicious user detection.

VI. CONCLUSIONS

In this paper, we reveal the necessity of malicious behavior
detection on social media and propose a dataset with both user
and tweet labels for this research. To integrate both structural
and semantic information, we create a graph with multiple
nodes including users, tweets, mentions, hashtags, topics, and
multiple-name entities. Based on the graph data, we introduce
a novel GraphBERT model which integrates both semantic
and relational information. The extensive experiments on both
malicious user detection and malicious tweet classification
tasks show our model outperforms the either graph or textual
baselines. Results of few-shot learning also show that using
GraphBERT, only a small number of labeled tweets can greatly
improve malicious user detection. In the future, one promising
direction is to apply a heterogeneous GNN to treat different
node types and edge types distinctively. We also start to create
the multi-language dataset for malicious behavior detection
with the potential to learn cross-language malicious behaviors.
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