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Abstract

Modern embodied Al uses multimodal large
language models (MLLMs) as policy mod-
els, predicting actions from final-layer hidden
states. This widely adopted approach, however,
assumes that monolithic last-layer representa-
tions suffice for decision-making—a structural
simplification at odds with decades of cogni-
tive science, which highlights the importance
of distributed, hierarchical processing for per-
ception and action. Addressing this founda-
tional asymmetry, we introduce a hierarchical
action probing method that explicitly aggre-
gates representations from all layers, mirroring
the brain’s multi-level organization. Experi-
ments reveal that early layers facilitate spatial
grounding, middle layers support contextual
integration, and later layers enable abstract gen-
eralization—which shows MLLMs inherently
encode distributed action-relevant structures.
These layer-wise features are integrated by a
lightweight probe for spatial reasoning and con-
textual understanding, without costly backbone
fine-tuning. This hierarchical solution shows
significant improvements over standard last-
layer embodied models in physical simulators,
achieving a 46.6% success rate and a 62.5%
gain in spatial reasoning tasks. These findings
challenge conventional assumptions in embod-
ied Al, establishing hierarchical probing as a
principled alternative grounded in both cogni-
tive theory and empirical evidence.

1 Introduction

In embodied Al, multimodal large language mod-
els (MLLMs) enable agents to perceive visual-
language inputs and generate actionable outputs
(Driess et al., 2023; Zitkovich et al., 2023; Szot
et al., 2024). Their current application in embodied
tasks predominantly relies on single-layer repre-
sentations—specifically, the final hidden state—for
action prediction, mirroring traditional language
generative modeling.

However, this reliance on monolithic, final-layer
representations presents a structural asymmetry in
embodied Al: this largely unchallenged convention
contrasts sharply with decades of cognitive science
emphasizing hierarchical, distributed perception
(Paccanaro and Hinton, 2001; Hinton, 2023). This
simplification, while perhaps adequate for static
language tasks, overlooks rich intermediate-layer
features in embodied multimodal tasks. Our work
challenges the common assumption that final-layer
outputs are sufficient for complex embodied poli-
cies. We hypothesize that MLLM layers inherently
specialize (e.g., early for spatial relations, middle
for contextual dependencies, later for abstract se-
mantics), necessitating stratified grounding. Dis-
carding this internal structure potentially creates
a bottleneck in aligning with the cognitive com-
plexity of embodied environments. Indeed, even
in pure language tasks, leveraging multiple layers
can improve performance (Abbas et al., 2024; Pan
et al., 2024; Chételat et al., 2025; Tian et al., 2025),
yet many embodied models (Zitkovich et al., 2023)
still predominantly use final-layer outputs.

To explore this, we introduce Hierarchical Ac-
tion Probing (HAP) as a conceptual pivot. To the
best of our knowledge, this is the first attempt to
employ probing techniques—originally for model
interpretability—to uncover the phenomenon of
how distributed hierarchical representations, which
are fundamental to human cognition (Hasson et al.,
2008; Lerner et al., 2011), also naturally emerge
and can be harnessed in embodied policy models.
In particular, HAP recenters the internal layer-wise
states of MLLM-based policy models for ground-
ing behavior, using the full representational capac-
ity. Rather than simply combining multiple lay-
ers as in prior NLP work, our novel contribution
lies in improving embodied policy models through
cognitive insights. We show that the hierarchical
distributed representation is crucial in both human
cognition and multimodal embodied tasks.



As a direct consequence of this insight, our tech-
nical approach consists of (i) a visual encoder, (ii)
the MLLM backbone generating layer-wise states,
and (iii) a multi-layer action probe hierarchically
aggregating these states. This hierarchy allows
policy models to capture fine-grained spatial rela-
tionships and high-level task semantics, mirroring
the brain’s distributed processing. The method-
ological improvements are valuable outcomes stem-
ming from this cognitive perspective. We examine
HAP’s effectiveness on language-guided rearrange-
ment tasks in the physical simulators.

Experiments show HAP achieves strong perfor-
mance, with our 7B model matching LLaRP-7B’s
42% success rate and our 13B model reaching
46.6%, surpassing LLaRP-13B’s 46%. HAP par-
ticularly excels in spatial reasoning (13% vs. 8%
for LLaRP-7B). Detailed ablation studies further
reveal layer-wise specializations—intermediate lay-
ers for spatial understanding, later layers for object
affordances—empirically supporting our hierarchi-
cal design principles and the benefits of probing
these internal structures.

2 Related Work

Recent research has explored using large pretrained
MLLMs (Jian et al., 2023, 2024; Han et al., 2024,
Zhang et al., 2025; Diao et al., 2025; You et al.,
2025; Zhou et al., 2025; Guo et al., 2025; Wang
et al., 2025a,b; Liu et al., 2023, 2024) as policies
for embodied tasks, often termed vision-language-
action (VLA) models. Approaches like RT-2-
X (Zitkovich et al., 2023) and OpenVLA (Kim
et al., 2024) scale to billion-parameter policies,
leveraging large datasets like Open X-Embodiment
for training. Other works, such as (Huang et al.,
2024; Li et al., 2024; Zhen et al., 2024; Dorka
et al., 2024), focus on single-robot or simulated
setups, while (Zitkovich et al., 2023; O’Neill et al.,
2024) lack efficient fine-tuning for new configu-
rations. Parameter-efficient techniques, such as
LLaRP (Szot et al., 2024) and OpenVLA (Kim
et al.,, 2024), address computational challenges
by fine-tuning MLLMSs, enabling generalization
to novel tasks.

In contrast to existing VLA models that rely on
monolithic last-layer representations, we show the
role of hierarchical representations in embodied
policy models—mirroring the human brain’s hier-
archical and distributed cognitive processes.
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Figure 1: We probe hidden states across all LM layers
to predict actions through an action probing module.

3 Methodology

The embodied task is formulated as a Partially
Observable Markov Decision Process (POMDP),
defined by (S, 0, A, P, R, po,7), where S is the
state space, O the observation space (e.g., egocen-
tric RGB images), A the action space, P transition
dynamics, R the reward function, pg the initial
state distribution, and - the discount factor. The
agent, given a natural language goal g € G, gen-
erate actions a; € A based on visual observations
ot € O to maximize cumulative reward R (s¢, g).
The objective is to learn a goal-conditioned policy
m(at|o1, ..., 0, g). While POMDPs formally use
belief states, conditioning on history o1, ..., 0 is a
practical approach with sequence models like LMs,
which implicitly summarize history to approximate
the belief state, addressing partial observability.
This policy model can generalize to novel goal dis-
tributions G'.

3.1 Architecture of the Policy Model

Our architecture (Fig. 1) comprises three key com-
ponents: the visual encoder, the LM backbone, and
the multi-layer action probe.

Visual Encoder The visual encoder E;)/ 10—

RP (a pretrained ViT with a learnable MLP) pro-
cesses raw visual observations o; into visual to-
ken embeddings v; = EX (0¢). This maps high-
dimensional visual inputs to a compact token space
for the MLLM backbone.

LM as Policy The LM backbone 1)y, with L
transformer layers, processes concatenated vi-
sual token embeddings v; and language goal
embeddings E] (g). For each layer | €
{1,...,L} and time ¢, it outputs hidden states



Overview

Train and New Scenes

Paraphrastic Robustness Behavior Generalization

All BG PR TR SC INS RE SpP CTX IR MR NO MO CO
ZS-ChatGPT 22.0 23.0 21.0 57.0 52.0 58.0 24.0 5.0 10.0 11.0 24.0 61.0 2.0 5.0
ZS-Llama 12.0 14.0 10.0 54.0 41.0 34.0 3.0 0.0 5.0 6.0 6.0 50.0 0.0 0.0
ZS-Flamingo 6.0 8.0 4.0 24.0 14.0 18.0 0.0 0.0 0.0 2.0 8.0 24.0 2.0 0.0
LSTM-Flan 250+1 28.0+1 23.0+1 | 98.0+1 95.0 +38 850+2 6.0+1 40+4 150+3 5.0x2 | 19.0+4 830+3 00+0 100xs6
LSTM-Llama 2.0 +1 00+0 3.0=x2 |31.0=x2 15.0 +2 120+3 1.0+ 20+4 0.0x1 0.0+ 0.0 £1 1.0+1 00x0 0.0zxo0
LLaRP-scratch 17.0 +4 18.0+5 16.0+3 | 90.0 +9 90.0 +9 590+13 3.0+1 30x3 40+3 13.0+4 | 150x6 580=x16 00+0 1.0+
LLaRP-7B 420+2 45.0+3 38.0+1 | 99.0+1 96.0 +4 920+2 260+2 80+1 340+2 320+2|47.0+5 950+4 00+1 39.0x+3
Ours-7B 424 43.1 41.0 99.0 974 91.3 28.2 13.6 379 35.1 48.5 89.2 0.3 36.4
LLaRP-13B 46.0 48.0 44.0 98.0 100.0 95.0 31.0 15.0 41.0 37.0 51.0 98.0 0.0 45.0
Ours-13B 46.6 48.3 45.0 99.0 97.1 94.6 334 18.7 42.1 38.0 53.5 954 2.1 43.6
harder setting:
LSTM-Flan 12.0 14.0 11.0 57.0 52.0 50.0 3.0 0.0 0.0 2.0 11.0 43.0 0.0 0.0
LLaRP-7B 28.0 27.0 28.0 56.0 61.0 62.0 23.0 1.0 32.0 24.0 31.0 56.0 0.0 20.0
Ours-7B 264 249 29.4 60.2 63.1 59.7 26.0 4.6 35.8 239 27.1 48.6 0.0 21.7

Table 1: Success rate across tasks for all baselines and settings. BG stands for behavior generalization, PR
for paraphrastic robustness, TR for train, SC for new scenes, INS for instruction rephrasing, RE for referring
expressions, SP for spatial relationships, CTX for context, IR for irrelevant text, MR for multiple rearrangements,
NO for novel objects, MO for multiple objects, and CO for conditional instructions. App. B.1 reports results on
Qwen2.5 (Qwen Team, 2025), which further suggest that HAP is effective for other recent LMs.

hl € RP. The first layer’s state is h} =
¢! (Concat(E} (g),v1,...,v)). Forl > 1, hid-
den states are h} = ¢!(hl™1). This recursive ex-
pression is a notational simplification; the frozen
LM backbone inherently includes standard compo-
nents like pre-normalization and residual connec-
tions, which remain unmodified by our approach.
Our shallow probe operates on these frozen repre-
sentations, avoiding deep gradient flow issues. This
hierarchical processing allows the LM to capture
diverse features for embodied grounding.

Multi-Layer Action Probe The action probe
aggregates hidden states h}, ..., h} from all lay-
ers corresponding to visual tokens (language to-
kens are excluded). Each k! is reduced to 512 di-
mensions via a 2-layer MLP (ReLU, LayerNorm).
These are concatenated and passed to a final 2-layer
MLP P(-) for action prediction:

. 70t7g) =
P (Concat (MLPy(h;),...,MLP.(h{))). (1)

W(at‘Ol, .

It provides disentangled, parallel access to represen-
tations across the hierarchy, allowing each layer’s
output to contribute more independently to the pre-
diction. This contrasts with standard residual con-
nections where earlier layer information flows indi-
rectly and can become entangled or attenuated. Our
approach allows learnable weighting of layer-wise
specializations (e.g., spatial, contextual, abstract),
enhancing performance, particularly in tasks requir-
ing nuanced spatial reasoning, by leveraging this
richer, more accessible hierarchical information.
For discussion of how the probing’s disentangled
layer access contrasts with residual connections,

see App A.4. Ablation studies of the probing usage
are in App. B and Tab. 2.

4 Experiments

We assess our approach on challenging language-
guided rearrangement tasks within the Habitat 2.0
simulator (Szot et al., 2021). For fair compar-
isons, we follow the usage of frozen VisualCortex
ViT (Majumdar et al., 2023) and Llama-2 (Tou-
vron et al., 2023)/Qwen2.5-VL (Qwen Team, 2025)
backbones from Szot et al. (2024), training only a
lightweight hierarchical probe using PPO; base-
lines include: 1) ZS-ChatGPT, iteratively refin-
ing actions with environment feedback; 2) ZS-
LLaMA, generating a single plan with LLM (Tou-
vron et al., 2023); 3) ZS-Flamingo, a multimodal
zero-shot planner using IDEFICS (Alayrac et al.,
2022); 4) LLaRP-Scratch, a 7B-LLM variant
trained from scratch; 5) LSTM-Flan, combining
Flan-T5 (Chung et al., 2024) with an LSTM; and
6) LSTM-LLaMA, using LLaMA with a Perceiver
Resampler (Jaegle et al., 2022). Further details on
simulators, baselines, and setups are in App. A.

4.1 Main Results

According to Tab. 1, our hierarchical probing shows
strong performance across the benchmark suite,
with Ours-7B achieving a 42% overall success
rate (matching LLaRP-7B) and Ours-13B reach-
ing 46.6% (surpassing LLaRP-13B’s 46%). These
results significantly outperform zero-shot base-
lines like ChatGPT (22%), LLaMA (12%), and
Flamingo (6%), highlighting the effectiveness of
unlocking pretrained capabilities by post-training.

Our usage of hierarchical representation
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Figure 2: Layer-wise ablation study across tasks show distinct specialization patterns: early layers (1-8) excel at
spatial reasoning, middle layers (9-24) optimize contextual understanding, and later layers (25-32) enable abstract

reasoning for tasks like novel objects and new scenes.

shows particular strength in tasks requir-
ing complex spatial and contextual reasoning.
Specifically, Ours-7B achieves a 62.5% relative
improvement in spatial relationship tasks (13%
vs. 8% for LLaRP-7B) and an 8% improvement
in paraphrastic robustness (41% vs. 38%). The
larger Ours-13B model further extends these gains,
demonstrating improvements in contextual under-
standing (42% vs. 41% for LLaRP-13B) and mul-
tiple rearrangements (53% vs. 51%). These re-
sults validate our cognitive hypothesis that inte-
grating features across different processing levels
enhances the model’s ability to handle complex
spatial-temporal relationships.

While this approach performs well at spatial-
temporal tasks, we observe some limitations in
tasks heavily dependent on high-level semantic
understanding. Notably, performance slightly de-
creases in novel object handling (89% v.s. 95% for
LLaRP-7B) and remains unchanged for multiple
object manipulation (0% for both models). This
pattern suggests that our current implementation,
while effective at integrating diverse features, may
partially dilute the rich semantic representations
typically concentrated in the LM’s final layers.

To assess real-world applicability, we also eval-
uate our method under more stringent conditions
where invalid actions result in immediate episode
termination and explicit stop actions are required.
In this challenging setting, Ours-7B demonstrates
improved robustness, achieving better performance
in spatial reasoning (4% vs. 1% for LLaRP-7B)
and paraphrastic understanding (29.4% vs. 28%).
These results indicate that our hierarchical ap-
proach enhances the model’s precision and reli-
ability in more realistic scenarios.

4.2 LM Hierarchies Mirror Neural Processing

To understand the hierarchical representations, in
Fig. 2, we conduct layer-wise ablation studies by
dividing the LM’s 32 layers into quarters.

Early and Middle Layers (1-16) These layers
predominantly process spatial and geometric in-
formation. Mid-early layers (8-16) achieve peak
performance in spatial reasoning (11% success rate
vs. 8% for layers 1-8), suggesting their impor-
tance for processing low-level visual features and
spatial relationships. Similarly, contextual under-
standing improves progressively through middle
layers, reaching 33% success rate at layers 16-24.

Later Layers (17-32) These layers specialize in
abstract reasoning and generalization. Performance
on novel object tasks increases dramatically from
29% (early layers) to 89% (full model), while scene
adaptation improves from 47% to 85%. However,
we observe a slight decline in contextual under-
standing (28% vs. 33%) when including the final
layers, indicating a trade-off between abstraction
and contextual processing.

These findings show the complementary nature
of layer-wise representations: early layers pro-
cess spatial information of the received observa-
tion visual tokens, middle layers integrate context,
and later layers enable abstraction. Additionally,
App. D has qualitative behavioral examples show-
ing how HAP improves decision-making in tasks
requiring spatial and contextual reasoning.

5 Conclusion

Inspired by cognitive science, this work challenges
prior MLLM’s use in embodied Al. Our hierarchi-
cal action probing, by engaging internal MLLM
structures beyond just final layers, improves pol-



icy models—notably in spatial reasoning and con-
textual understanding. We also reveal MLLMs’
inherent, human brain-like layer-wise specializa-
tions, affirming distributed hierarchical processing
as pivotal for more capable embodied agents.

Limitations

While our approach performs well on many tasks,
it is slightly less effective when it requires only
high-level semantic understanding (such as novel
object generalization). Future work could focus
on better balancing hierarchical integration and se-
mantic preservation. Additionally, as MLLMs are
developed toward more flexible action spaces and
deployed in the real world, greater effort will be
needed to ensure they remain safe and harmless to
human society, and to reduce potential risks.
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A Detailed Experimental Setting

To ensure clarity and reproducibility, this section
explicitly details the experimental framework, base-
lines, and model setup adopted in our study. Our
methodology, including task descriptions, datasets,
and evaluation metrics, aligns with those estab-
lished in the LLaRP paper (Szot et al., 2024), en-
suring comparability and consistency with existing
literature in language-driven embodied Al.

A.1 Task Setting

We evaluate our models within the domain of
language-driven rearrangement tasks. In these
tasks, embodied agents operate in simulated en-
vironments and are instructed via natural language
to manipulate and reposition objects. The tasks
probe a range of capabilities, including:

* Spatial Relationships: Requiring rearrange-
ment based on nuanced spatial descriptions
(e.g., “to the right of the left counter™).

* Novel Objects: Handling objects not seen
during training.

* Contextual Reasoning: Acting on implied
rather than explicit cues.

¢ Multiple Rearrangements: Following multi-
step or composite instructions.

* Referring Expressions: Grounding indirect
object descriptions (e.g., “a yellow curved
fruit™).

* Conditional Instructions: Executing condi-
tional logic in instructions (e.g., “If the fridge
is open, move X; otherwise, move Y”).

A.2 Dataset and Simulator

Experiments utilize the Habitat 2.0 simulator
environment (Szot et al., 2021), specifically its
language-guided rearrangement benchmark. This
provides diverse scenarios categorized by varying
complexity, generalization requirements (e.g., new
scenes, new objects), and linguistic challenges,
forming a robust testbed for embodied agent gener-
alization.

A.3 Baselines

Following LLaRP (Szot et al., 2024), we include a
range of baselines. Of particular note, the “LLaRP-
Scratch” model (Szot et al., 2024) uses the same ar-
chitecture as LLaMA-7B but is trained from scratch

without any LLLM pretraining (approx. 2B parame-
ters). This baseline, which we include for context
rather than direct comparison, isolates the impact
of LLM pretraining: as shown in prior work, pre-
trained LLaRP models converge faster and gener-
alize better than their scratch-trained counterparts,
despite having more parameters. This comparison
reinforces the motivation for our approach, which
leverages frozen, pretrained LLMs for improved
generalization in embodied tasks.
Other baselines include:

* ZS-ChatGPT uses ChatGPT to iteratively re-
fine a high-level action plan with propriocep-
tive feedback.

* ZS-LLaMA uses instruction-tuned LLaMA -
65B (Touvron et al., 2023) to generate a static
action plan.

* ZS-Flamingo leverages IDEFICS, a
Flamingo-based (Alayrac et al., 2022) VLM,
for single-shot planning.

e LSTM-Flan encodes instructions with Flan-
T5 (Chung et al., 2024) and observations with
an LSTM.

e LSTM-LLaMA encodes instructions with
LLaMA and observations with a Perceiver Re-
sampler (Jaegle et al., 2022) plus LSTM.

A.4 Model Setup

All baselines and our proposed model employ the
VisualCortex model (Majumdar et al., 2023), a ViT
backbone optimized for egocentric visual tasks. In
our approach, rather than training a new end-to-end
vision-language model, we combine a frozen Visu-
alCortex ViT visual encoder with a frozen LLaMA-
2 backbone. These two modules are connected via
a lightweight trainable MLP that serves as a modal-
ity connector. The output of the ViT is treated as
a sequence of additional visual tokens, appended
after the language instruction tokens. The entire
concatenated sequence is then jointly processed by
the LLaMA-2 backbone.

At each timestep ¢, tokenized language instruc-
tions g and visual observations o1, ..., 0; are em-
bedded and passed through the frozen LLaMA-2
backbone, which has L transformer layers. The [-th
layer outputs a hidden state h}. Our HAP module
then aggregates the hidden states from all layers
(hi, ..., h¥) that correspond to the visual tokens



(importantly, hidden states corresponding to lan-
guage instruction tokens are excluded at this stage).
Each layer’s visual hidden state A is first projected
into a 512-dimensional space using a 2-layer MLP
(with ReLU activations and LayerNorm). These
projected vectors are then concatenated and passed
through a final 2-layer MLP to predict a distribution
over actions ay, as formally defined in Equation 1
in the main paper.

Distinction from Standard Residual Connec-
tions A critical aspect of our HAP design is
its difference from how information is typically
propagated via standard residual connections in
transformer architectures like LLaMA-2. Main-
stream generative decoder LLMs employ resid-
ual connections, often with pre-normalization, al-
lowing each layer to pass its representation for-
ward, e.g., hi = block!(h{™1) + hl~1, followed
by hit = block!*!(hl) + hi. While this formu-
lation facilitates information flow through the net-
work, it does so indirectly. Each layer primarily
accesses the output of its immediate predecessor,
and information from earlier layers (e.g., hi_?’) be-
comes absorbed and transformed through succes-
sive operations. Consequently, the contribution
from these earlier layers can become increasingly
entangled and potentially attenuated as network
depth increases. The final layer’s output, therefore,
contains a blended representation of all preceding
layers.

In stark contrast, our HAP module explicitly ex-
tracts the hidden state h} from each transformer
layer independently. These layer-specific represen-
tations are then fed in parallel into our lightweight
probing module. This architectural choice provides
disentangled, parallel access to representations
across the entire hierarchy of the LLM. Each layer’s
output can thus contribute more independently to
the final action prediction, rather than its influence
being solely mediated through subsequent layers
and the final output layer, as the final output in our
study is y; = Zle block! (htl_l) + Tt

The benefits of this disentangled access are man-
ifold. As our layer-wise ablation studies demon-
strate (Fig. 2 in the main paper), different layers
specialize in processing distinct aspects of the in-
put: early layers are more attuned to spatial reason-
ing, middle layers to contextual understanding, and
later layers to abstract generalization. HAP’s abil-
ity to independently tap into these specialized repre-
sentations allows for a more nuanced and dynamic

integration of information. This hierarchical inte-
gration enables our model to outperform last-layer
baselines, particularly in tasks demanding robust
spatial reasoning (e.g., achieving a +62.5% relative
gain over LLaRP-7B in SP tasks, as shown in Table
1). In summary, while residual connections ensure
latent information flows through the network, they
do not offer the same level of independent access or
the capacity for dynamic, task-adaptive weighting
of layer-specific features that our probing approach
enables.

Action Prediction from Visual Tokens A key
design choice within HAP is that, for the final ac-
tion prediction, our output module (D,,, embodied
by the final MLPs in the probe) operates only on
the hidden states corresponding to the visual ob-
servation tokens (o1, ..., o¢) from all transformer
layers. Hidden states corresponding to the lan-
guage instruction tokens are excluded from this
final aggregation step. The motivation behind this
is to ensure that the predicted action a; is funda-
mentally a reaction to the agent’s current perceived
state, as processed and contextualized by the LLM
in light of the overall language goal g. Although
only the visual hidden states are directly fed into
the action output module, the LLM’s self-attention
mechanism ensures that these visual hidden states
are already deeply contextually enriched by the pre-
ceding language instruction tokens. Therefore, the
action output module D, effectively learns a map-
ping from a goal-conditioned, multi-layer visual
state representation to an appropriate action distri-
bution. This approach, adapted from and extending
LLaRP (Szot et al., 2024), allows the policy to har-
ness features across different levels of abstraction,
improving generalization across both spatial and
semantic tasks.

Online Experience Collection for PPO During
the PPO training phase, the "dataset" is not a static
collection but rather an online stream of experi-
ence. This experience is collected as the agent
interacts with the language-guided rearrangement
tasks within the Habitat 2.0 simulator (Szot et al.,
2021). Each collected episode comprises a natural
language instruction, a (potentially novel) visual
scene, and sparse rewards indicating task progress
or completion. The agent selects high-level actions
from a predefined skill set (e.g., pick, place, nav-
igate), and its policy is optimized via PPO using
these collected trajectories of observations, actions,
and rewards.



A.5 Training Protocol

Training begins with policy pretraining using last-
layer hidden states and a basic action decoder, im-
plemented via the DD-PPO algorithm (Wijmans
et al., 2020), a multi-GPU adaptation of PPO.
Next, we fine-tune the multi-layer probing mod-
ule while freezing the MLLM backbone and visual
encoder. This two-stage protocol preserves pre-
trained representations and mitigates catastrophic
forgetting(Alayrac et al., 2022; Yuan et al., 2025).
Only the probing module and action prediction
head are optimized for cumulative reward using
DD-PPO updates, reducing computational over-
head by avoiding backward passes through the full
MLLM. Training hyperparameters include a dis-
count factor v = 0.99, Generalized Advantage
Estimation (GAE) with A = 0.95, learning rate of
le—4, and batch size 64. Training runs for 70 hours
on 4 NVIDIA H100 GPUs.

A.6 Evaluation Metrics

The primary evaluation metric is the Success
Rate—the percentage of episodes in which the
agent completes the given rearrangement task ac-
cording to the language instruction. Following
LLaRP (Szot et al., 2024), we report overall and
fine-grained success rates, analyzing generalization
to new scenes, paraphrastic robustness, and behav-
ioral generalization (e.g., handling semantically
similar but syntactically different tasks).

By following these established settings and ex-
plicitly detailing the role of hierarchical probing
over visual token representations, our work aims
to contribute directly comparable and interpretable
findings to the embodied Al research landscape.

B Rationale for Multi-Layer Probe
Architecture

In designing the multi-layer action probe, careful
consideration was given to the architecture of the
MLP used to process hidden states from each trans-
former layer. We select a 2-layer MLP based on
a balance between representational capacity and
training complexity, a choice informed by estab-
lished practices in recent probing literature (Gairola
et al., 2025; Gao et al., 2025). To validate this
choice, we conduct experiments comparing probes
of varying depths.

As shown in Table 2, a 2-layer MLP achieved the
optimal trade-off in performance. The decision for
a 2-layer MLP is further supported by the following

Method Total (%) PR (%) BG (%)
LLaRP-13B 46.0 44.0 48.0
- 1-layer MLP 42.0 39.9 44.0
- 2-layer MLP (ours) 46.6 45.0 48.3
- 3-layer MLP 42.5 40.1 45.0

Table 2: Comparison of action probe MLP depths.
LLaRP refers to the baseline performance using its stan-
dard configuration. PR and BG mean tasks in Paraphras-
tic Robustness and tasks in Behavior Generalization.
Our 2-layer MLP probe demonstrates superior or com-
parable performance to other configurations.

observations:

First, a single-layer (linear) probe proved insuffi-
cient for capturing the complex semantic-to-action
mappings inherent in the middle-layer represen-
tations of pretrained MLLMs. These mappings
frequently necessitate non-linear transformations,
which a linear probe cannot adequately model,
thereby leading to degraded performance.

Second, conversely, deeper probes (e.g., a 3-
layer MLP) introduce increased training complex-
ity and a higher risk of overfitting to the training
data. Given that the primary objective of prob-
ing is to assess the expressiveness of existing pre-
trained representations rather than to learn entirely
new ones, a more complex and deeper architecture
could diminish stability without yielding substan-
tial performance improvements.

Therefore, the 2-layer MLP configuration offers
an optimal balance, effectively capturing necessary
non-linearities while minimizing training overhead
and overfitting risks. This aligns with conventions
in recent studies on model interpretability and prob-
ing (Gairola et al., 2025; Gao et al., 2025; Yuan
et al., 2024).

B.1 Generalizability to Other Model
Architectures

To address the generalizability of HAP beyond
the LLaMA-2 architecture, we initiate experiments
with the Qwen series models. While these inves-
tigations are ongoing, early results are promising
and provide initial insights into HAP’s adaptability.
The experimental settings are kept consistent with
our default setup.

Preliminary findings, presented in Table 3, indi-
cate that HAP can be effectively applied to models
like Qwen2.5-7B (with a VC-1 ViT visual encoder),
which exhibits solid performance. We hypothesize
that its larger pretraining corpus (18T tokens com-



Method Total (%) BG (%) PR (%)
Qwen2.5-VL-7B 29.5 352 23.8
Qwen2.5-7B w/ VC-1 ViT 375 40.0 352
Ours-7B (LLaMA-2) 424 43.1 41.0
Ours-7B (Q2.5-VL-7B w/ VC-1) 48.6 50.4 46.8

Method Total (%) BG (%) PR (%)
LLaRP-7B 42.0 45.0 38.0
Ours-7B (skip one) 42.2 45.0 394
Ours-7B (default all) 42.4 43.1 41.0

Table 3: Preliminary generalizability results with cur-
rent Qwen series models. PR and BG mean tasks in
Paraphrastic Robustness and tasks in Behavior Gener-
alization. Ours-7B refers to our HAP method applied
to LLaMA-2 7B for baseline comparison. The latest
Qwen2.5-7B with VC-1 ViT visual encoder yields the
best results.

pared to LLaMA-2’s 2T tokens) contributes to this
outcome, suggesting that HAP can leverage the
strong pretrained capabilities of diverse foundation
models. Conversely, Qwen2.5-VL-7B, when using
its native built-in visual encoder, showed less effec-
tive performance. This is attributed to the specific
nature of embodied tasks, where egocentric video
data plays a crucial role in adaptation—a factor
potentially less emphasized in models pretrained
on more generic vision datasets. When we use the
latest Qwen2.5-VL-7B with the VC-1 ViT visual
encoder, it achieves the best results so far. This
suggests our approach can keep improving with
stronger foundation models.

Despite these initial variations, we are optimistic
about the broader applicability of our method, par-
ticularly when paired with foundation models with
different architectures (Gu and Dao, 2023; Ye et al.,
2025; Shi et al., 2025) that possess strong pre-
trained representations relevant to embodied Al

C Ablation Study on Skip-Layer
Partitioning

Our main paper presents an ablation study where
transformer layers were partitioned into consecu-
tive blocks. To further investigate the impact of
layer selection, we conducted an additional abla-
tion study employing a skip-layer strategy, where
representations are probed from every other layer.
Our initial intent was to establish a baseline with a
general, consecutive partitioning strategy.

The results of this skip-layer probing are pre-
sented in Table 4. These findings suggest that
sparse probing (e.g., using a skip-layer strategy)
can be as effective as, and in some aspects slightly
outperform, dense probing of all consecutive lay-
ers. For many subtasks, performance remained
comparable or showed slight improvements. This
phenomenon, where sparse probing yields strong

Table 4: Ablation study results with skip-layer probing
strategy. “LLaRP” is the baseline. “Ours (skip one)”
refers to probing every other layer. “Ours (default all)”
refers to our standard HAP method probing all layers.

[ Novel Objects ] [ Referring Expression ]

Task: Swap the wrench and

[ Spatial Relation ]

Task: Move a box from the sofa

to the right of the left counter. peach from the sink and brown Task: Take a yellow curved fruit

table. and place it on the blue table.
Agent Behavior: The agent
identifies the precise receptacle
location and reliably places the
box in the sink, interpreting
nuanced spatial descriptions.

Agent Behavior: The agent

g Agent Behavior: The agent
interacts with the wrench,

identifies the banana despite
the indirect reference and
places it on the table.

accurately picking it from the
sink and swapping it with a
peach.

[ Conditional Instruct ]

Task: If the fridge is open,
move a spoon to the sink;
otherwise, move a pear to the
sink.

Agent Behavior: The agent
verifies the fridge state and
selects and moves the pear to
the sink based on the closed
condition.

[Contextual Reasoning] [ Multiple Rearrange ]

Task: Locate a tool to fix a
loose screw in the sofa and
bring it there

Task: Deposit all the apples on
the blue table.

Agent vior: The agent
searches and sequentially
decides, finding and relocating
multiple apples onto the
specified table.

Agent Behavior: The agent
infers the necessity of a
screwdriver and locates and
delivers it to the intended
location

Figure 3: Examples of agent behaviors across diverse
and challenging scenarios: (a) Spatial Relationships,
where location descriptions are correctly interpreted;
(b) Novel Objects, demonstrating interaction with previ-
ously unseen items; (c) Referring Expressions, involv-
ing identification of objects from indirect descriptions;
(d) Contextual Reasoning, where implicit needs are in-
ferred and acted upon; (e.e.) Multiple Rearrangements,
showcasing handling of multi-object tasks; and (f) Con-
ditional Instructions, requiring adherence to logical con-
ditions.

results, aligns with observations in prior works
on interpretability and sparse probing techniques
(Gurnee et al., 2023; Allen-Zhu and Li, 2024).

D Behavior Study: Qualitative Analysis
of HAP Capabilities

To illustrate how HAP enhances decision-making,
Fig. 3 presents successful agent behaviors in chal-
lenging scenarios, highlighting benefits of leverag-
ing multi-layer MLLM representations.

Spatial Reasoning (Fig. 3a): The agent correctly
interprets complex spatial instructions (e.g., relocat-
ing a box to a nuanced target like "right of the left
counter," identified as the sink). HAP strengthens
this by utilizing specialized lower-layer MLLM in-
formation attuned to geometric details, increasing
accuracy and stability in such spatial tasks.

Novel Objects (Fig. 3b): The agent’s interac-
tion with previously unseen items, like swapping
a novel wrench, showcases HAP’s potential for
adaptability. By enabling a more balanced seman-



tic integration from various MLLM layers, HAP
may improve the recognition and handling of new
objects, though careful design is needed to preserve
high-level semantics.

Referring Expressions (Fig. 3c): Successful
grounding of indirect descriptions (e.g., identify-
ing a "yellow curved fruit" as a banana) is demon-
strated. HAP reinforces this by better integrating
visual features from early MLLM layers with se-
mantic cues from middle and later layers, leading
to more robust understanding of such language.

Contextual Reasoning (Fig. 3d): HAP-enabled
agents demonstrate effective inference from con-
text, such as finding a screwdriver for a loose screw
without explicit mention. HAP’s leveraging of mid-
dle MLLM layers for contextual integration en-
hances the understanding of implicit cues, improv-
ing performance in these context-driven tasks.

Multiple Rearrangements (Fig. 3e): HAP shows
strength in handling tasks involving multiple ob-
jects, like depositing all apples on a designated
table. Its hierarchical integration improves task ro-
bustness, ensuring comprehensive completion even
when the number of items is not explicitly enumer-
ated.

Conditional Instructions (Fig. 3f): The agent
correctly executes conditional logic, for instance,
moving a pear because a fridge was observed to be
closed. HAP supports stronger and more explicit
conditional reasoning by effectively integrating in-
formation needed to evaluate conditions and select
appropriate subsequent actions, thereby improving
decision consistency over simpler models.

E Robustness of the Improvements

To assess the robustness of our improvements, we
conduct paired #-tests and Wilcoxon signed-rank
tests on representative tasks, using results from
three independent experimental runs per setting in
Table 5.

Task Baseline Ours Paired ¢-test (p) Wilcoxon (p)

SR 14.5,15.2,16.0 19.3,18.1,18.9 0.031 0.250
CR 39.8,41.1,41.7 41.5,43.2,41.5 0.533 0.500

Table 5: Statistical significance analysis of represen-
tative tasks. Results are averaged over three runs. SR
means Spatial Relationships. CR means Contextual Rea-
soning.

For Spatial Relationships, the improvement is
statistically significant at the 5% level using the
paired t-test (p = 0.031), indicating a reliable

benefit of hierarchical aggregation in this domain.
For Contextual Reasoning, the observed gain is
not statistically significant, which we attribute to
the higher run-to-run variability characteristic of
embodied environments. These findings support
our central claim: hierarchical aggregation pro-
vides consistent and statistically significant gains
in tasks benefiting from enriched grounding, while
improvements in other domains may be more mod-
est or variable due to randomness introduced by
simulators.
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